COMPUTERIZED ANALYSIS OF THE RELATIONSHIP BETWEEN ALLERGENICITY OF MICROORGANISMS AND THEIR HABITATS
Abstract
The prevalence of allergic diseases was rapidly increasing in the 20th century. Currently, many people suffer from allergy in industrial countries. Therefore, analysis of allergenic properties of proteins is an urgent task. The following factors were formerly hypothesized to determine the allergenicity of a protein: size, enzymatic properties, and similarity to human proteins. However, no analysis of the relationship between allergenicity of proteins and the habitat of the organisms producing them has been conducted hitherto. We predict allergenicity of proteins from proteomes of more than 500 species of microorganisms. It is shown that the number of allergenic proteins in the proteomes of microorganisms is significantly associated with their pathogenicity, habitat, temperature conditions of the habitat, and oxygen demand.
About the Authors
A. O. BraginRussian Federation
P. S. Demenkov
Russian Federation
E. S. Tiys
Russian Federation
R. Hofestädt
Germany
V. A. Ivanisenko
Russian Federation
N. A. Kolchanov
Russian Federation
References
1. Брагин А.О., Деменков П.С., Иванисенко В.А. Предсказание аллергенности белков с использованием информации о конформационных пептидах // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 3. С. 462–468.
2. Макарова С.Г., Боровик Т.Э. Дисбиоз кишечника у детей с пищевой аллергией: патогенетические аспекты и современные методы коррекции // Вопр. соврем. педиатрии. 2008. Т. 7. № 2. С. 82–92.
3. Altschul S.F., Gish W., Miller W. et al. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. No. 3.
4. P. 403–410.
5. Antranikian G., Vorgias C.E., Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts // Adv. Biochem. Eng. Biotechnol. 2005. V. 96. P. 219–262.
6. Barrett T., Clark K., Gevorgyan R. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata // Nucl. Acids Res. 2012. V. 40. (Database issue) D57–63.
7. Benson D.A., Karsch-Mizrachi I., Lipman D.J. et al. GenBank // Nucl. Acids Res. 2011. V. 39. (Database issue) D32–37.
8. Bischoff S.C., Krämer S. Human mast cells, bacteria, and intestinal immunity // Immunol. Rev. 2007. V. 217. Nо. 1. P. 329–337.
9. Breiteneder H., Mills E.N. Molecular properties of food allergens // J. Allergy Clin. Immunol. 2005. V. 115. Nо. 1. P. 14–23.
10. Cianferoni A., Spergel J.M. Food allergy: review, classifi cation and diagnosis // Allergol. Int. 2009. V. 58. P. 457–466.
11. FAO/WHO. Codex Principles and Guidelines on Foods Derived from Biotechnology. 2003.
12. Goodman R.E., Vieths S., Sampson H.A. et al. Allergenicity assessment of genetically modifi ed crops – what makes sense? // Nat. Biotechnol. 2008. V. 26. Nо. 1. P. 73–81.
13. Huby R.D., Dearman R.J., Kimber I. Why are some proteins allergens? // Toxicol. Sci. 2000. V. 55. Nо. 2. P. 235–246.
14. Irwin J.A. Extremophiles and their application to veterinary medicine // Environ. Technol. 2010. V. 31. P. 857–869.
15. Ivanciuc O., Schein C.H., Braun W. SDAP: database and computational tools for allergenic proteins // Nucl. Acids Res. 2003. V. 31. Nо. 1. P. 359–362.
16. Jauneikaite E., Jefferies J.M., Hibberd M.L., Clarke S.C. Prevalence of Streptococcus pneumoniae serotypes causing invasive and non-invasive disease in South East Asia: a review // Vaccine. 2012. V. 30. Nо. 24. P. 3503–3514.
17. Jeebhay M.F., Robins T.G., Lehrer S.B., Lopata A.L. Occupational seafood allergy: a review // Occup. Environ. Med. 2001. V. 58. Nо. 2. P. 553–562.
18. Jenkins J.A., Breiteneder H., Mills E.N. Evolutionary distance from human homologs refl ects allergenicity of animal food proteins // J. Allergy Clin. Immunol. 2007. V. 120. Nо. 6. P. 1399–1405.
19. Kong W., Tan T.S., Tham L., Choo K.W. Improved prediction of allergenicity by combination of multiple sequence motifs // In Silico Biol. 2007. V. 7. Nо. 1. P. 77–86.
20. Kuroda M., Yamashita A., Hirakawa H. et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection // Proc. Natl Acad. Sci. USA. 2005. V. 102. Nо. 37. P. 13272–13277.
21. Lapidus A., Goltsman E., Auger S. et al. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity // Chem. Biol. Interact. 2008. V. 171. Nо. 2. P. 236–249.
22. Li K.B., Issac P., Krishnan A. Predicting allergenic proteins using wavelet transform // Bioinformatics. 2004. V. 20. Nо. 16. P. 2572–2578.
23. Locksley R.M. Asthma and allergic infl ammation // Cell. 2010. V. 140. Nо. 6. P. 777–783.
24. MacDonald A.S., Araujo M.I., Pearce E.J. Immunology of parasitic helminth infections // Infect. Immun. 2002. V. 70. Nо. 2. P. 427–433.
25. Muh H.C., Tong J.C., Tammi M.T. AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins // PLoS One. 2009. V. 4. Nо. 6. e5861.
26. Pennisi E. In industry, extremophiles begin to make their mark // Science. 1997. V. 276. Nо. 5313. P. 705–706.
27. Platts-Mills T.A. Allergy in evolution // Chem. Immunol. Allergy. 2012. V. 96. P. 1–6.
28. Platts-Mills T.A., Vaughan J.W., Carter M.C., Woodfolk J.A. The role of intervention in established allergy: avoidance of indoor allergens in the treatment of chronic allergic disease // J. Allergy Clin. Immunol. 2000. V. 106. Nо. 5. P. 787–804.
29. Puc M. Characterisation of pollen allergens // Ann. Agric. Environ. Med. 2003. V. 10. Nо. 2. P. 143–149.
30. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2011. URL http://www.R-project.org/.
31. Reginald K., Westritschnig K., Werfel T. et al. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients // Clin. Exp. Allergy. 2011. V. 41. Nо. 3. P. 357–369.
32. Saha S., Raghava G.P. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes // Nucl. Acids Res. 2006. 34(Web Server issue):W202–209.
33. Stadler M.B., Stadler B.M. Allergenicity prediction by protein sequence // FASEB J. 2003. V. 17. Nо. 9. P. 1141–1143.
34. Sudha V.T., Arora N., Singh B.P. Serine protease activity of Per a 10 augments allergeninduced airway infl ammation in a mouse model // Eur. J. Clin. Invest. 2009. V. 39. Nо. 6. P. 507–516.
35. Takeuchi F., Watanabe S., Baba T. et al. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species // J. Bacteriol. 2005. V. 187. Nо. 21. P. 7292–7308.
36. Van den Burg B. Extremophiles as a source for novel enzymes // Curr. Opin. Microbiol. 2003. V. 6. Nо. 3. P. 213–218.
37. WAO White Book on Allergy / Eds R. Pawankar, G.W. Canonica, S.T. Holgate, R.F. Lockey. Milwaukee, Wisconsin: World Allergy Organization, 2011. P. 12.
38. Zorzet A., Gustafsson M., Hammerling U. Prediction of food protein allergenicity: a bioinformatic learning systems approach // In Silico Biol. 2002. V. 2. Nо. 4. P. 525–534.