Preview

Vavilov Journal of Genetics and Breeding

Advanced search

NEW FACILITIES OF THE MGSmodeller

Abstract

Mathematical modeling and analysis of complex molecular-genetic systems (MGS) are the key challenges in the systems biology era. To solve this task the special technologies and programming approaches considering the MGS as an ensemble of dynamic interconnected subsystems with a more simple structure are necessary to be developed. We have presented the approach that is aimed at acceleration of reconstruction of the complex MGS mathematical models and complex analysis using high performance computation techniques.

About the Authors

F. V. Kazantsev
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


I. R. Akberdin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. L. Podkolodnyy
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. A. Likhoshvai
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Акбердин И.Р., Казанцев Ф.В., Омельянчук Н.А., Лихошвай В.А. Математическое моделирование метаболизма ауксина в клетке меристемы побега растения // Информ. вестник ВОГиС. 2009. Т. 13. № 1. С. 170–175.

2. Казанцев Ф.В., Миронова В.В., Новоселова Е.С. и др. Язык моделирования молекулярно-генетических систем SiBML // Тр. конф. «Параллельные вычислительные технологии (ПаВТ) 2012». Новосибирск, 26–30 марта 2012. Новосибирск: ИВМиМГ СО РАН, 2012. С. 722.

3. Лихошвай В.А., Матушкин Ю.Г., Ратушный А.В. и др. Обобщенный химико-кинетический метод моделирования генных сетей // Молекуляр. биология. 2001. Т. 3. № 6. С. 1072–1079.

4. Ратнер В.А. Генетические управляющие системы. Новосибирск: Наука, 1966. 181 с.

5. Cedilnik A., Geveci B., Moreland K. et al. Remote large data visualization in the ParaView framework // Eurographics Parallel Graphics and Visualization. 2006. P. 163–170.

6. Funahashi A., Morohashi M., Kitano M., Tanimura N. Cell-Designer: a process diagram editor for generegulatory and biochemical networks // BIOSILICO. 2003. V. 1. P. 159–162.

7. Hoops S., Sahle S., Gauges R. et al. COPASI – a COmplex PAthway Simulator // Bioinformatics. 2006. V. 22. P. 3067–3074.

8. Hucka M., Finney A., Sauro H. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models // Bioinformatics. 2003. V. 19. P. 524.

9. Karr J., Sanghvi J., Macklin D. et al. A whole-cell computational model predicts phenotype from genotype // Cell. 2012. V. 150. I. 2. P. 248–250.

10. Kazantsev F.V., Akberdin I.R., Bezmaternykh K.D. et al. MGSmodeller – a computer system for reconstruction, calculation and analysis of mathematical models of molecular-genetic system // Proc. of the 6th Intern. Conf. on Bioinformatics of Genome Regulation and Structure (BGRS’2008). Novosibirsk, 22–28 June 2008. Novosibirsk: Inst. Cytol. Genet., 2008. P. 113.

11. Mironova V.V., Novoselova E.S., Doroshkov A.V. et al. Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance // Annals Bot. 2012. V. 110. I. 2. P. 349–360. doi:10.1093/aob/mcs069

12. Olivier B.G., Snoep J.L. Web-based kinetic modelling using JWS Online // Bioinformatics. 2004. V. 20. P. 2143–2144.

13. Sauro H.M., Hucka M., Finney A. et al. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration // OMICS. 2003. V. 7. Issue. 4. P. 355–372.

14. Shapiro B.E., Levchenko A., Meyerowitz E.M. et al. Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations // Bioinformatics. 2002. V. 19. I. 5. P. 677–678.


Review

Views: 418


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)