Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Genetic markers in sheep meat breeding

https://doi.org/10.18699/VJ16.139

Abstract

Cattle breeding, including sheep farming, is an important sector of agriculture. Increasing productivity and improving meat quality are considered today as the priorities in the industry. Significant advances have been achieved in sheep breeding through the use of genetics. The commonplace of all selection programs is using manufacturers selected on the basis of the quality of the offspring, relatives or ancestors. At the same time, using the achievements of molecular genetics can lead breeding to a new methodological level. The problem of finding reliable communication between productivity features and genetic markers has not yet been solved, because productivity is a set of features (unlike, for example, monogenic diseases) and its expression depends on the balance between various physiological functions. By contrast, imbalance may cause reduced productivity as a whole even if there is a positive role of prevailing element. Selection on the basis of genetic markers of productivity aims to work with animals with high genetic potential for weight gain and meat quality. This review considers promising genes – potential markers of productivity in sheep farming, such as growth hormone gene, callipyge, calpain and calpastatin, which have promise as genetic markers for sheep selection. However, it should be stated that in spite of numerous reports about potential genetic markers of productivity there is still no data about the influence of molecular genetic methods on improving the economic performance of sheep selection.

About the Authors

A. V. Deykin
IInstitute of Gene Biology, Russian Academy of Sciences
Russian Federation
Moscow, Russia


M. I. Selionova
All-Russian Scientific Research Institute of Sheep and Goat Breeding
Russian Federation
Stavropol, Russia


A. Yu. Krivoruchko
Stavropol State Agrarian University
Russian Federation
Stavropol, Russia


D. V. Kovalenko
All-Russian Scientific Research Institute of Sheep and Goat Breeding
Russian Federation
Stavropol, Russia


V. I. Truhachev
Stavropol State Agrarian University
Russian Federation
Stavropol, Russia


References

1. Anthony R.V., Liang R., Kayl E.P., Pratt S.L. The growth hormone/prolactin gene family in ruminant placentae. J. Reprod. Fertil. Suppl. 1995;49:83-95.

2. Bi P., Kuang S. Meat science and muscle biology symposium: Stem cell niche and postnatal muscle growth. J. Anim. Sci. 2012;90(3): 924-935.

3. Boman I.A., Klemetsdal G., Nafstad O., Blichfeldt T., Våge D.I. Impact of two myostatin (MSTN) mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries). Genet. Sel. Evol. 2010;42:4.

4. Busboom J.R., Wahl T.I., Snowder G.D. Economics of callipyge lamb production. J. Anim. Sci. 1999;77(Suppl. 2):243-248.

5. Byrne K., Vuocolo T., Gondro C., White J.D., Cockett N.E., Hadfield T., Bidwell C.A., Waddell J.N., Tellam R.L. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development. BMC Genomics. 2010;11(1):378.

6. Caiment F., Charlier C., Hadfield T., Cockett N., Georges M., Baurain D. Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res. 2010;20(12):1651-1662.

7. Carpenter C.E., Cockett N.E. Histology of longissimus muscle from 2-week-old and 8-week- old normal and callipyge lambs. Can. J. Anim. Sci. 2000;80(3):511-514.

8. Carpenter C.E., Rice O.D., Cockett N.E., Snowder G.D. Histology and composition of muscles from normal and callipyge lambs. J. Anim. Sci. 1996;74(2):388-393.

9. Chen E.Y., Liao Y.C., Smith D.H., Barrera-Saldaña H.A., Gelinas R.E., Seeburg P.H. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics. 1989;4(4):479-497.

10. Chung H.Y., Davis M.E., Hines H.C. A DNA polymorphism of the bovine calpastatin gene detected by SSCP analysis. Anim. Genet. 1999;30(1):80.

11. Chung H.Y., Davis M.E., Hines H.C. Genetic variants detected by PCR-RFLP in intron 6 of the bovine calpastatin gene. Anim. Genet. 2001;32(1):53.

12. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.-M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006;38(7): 813-818.

13. Cockett N.E., Smit M.A., Bidwell C.A., Segers K., Hadfield T.L., Snowder G.D., Georges M., Charlier C. The callipyge mutation and other genes that affect muscle hypertrophy in sheep. Genet. Sel. Evol. 2005;37(Suppl. 1):S65-S81.

14. Eftekhari Shahroudi F.E., Nassiry M.R., Valizadh R., Moussavi A.H., Tahmoorespour M., Ghiasi H. Genetic polymorphism at MTR1A, CAST and CAPN loci in Iranian Karakul sheep. Iran J. Biotechnol. 2006;4:117-122.

15. Everts A.K.R., Wulf D.M., Wheeler T.L., Everts A.J., Weaver A.D., Daniel J.A. Enhancement technology improves palatability of normal and callipyge lambs. J. Anim. Sci. 2010;88(12):4026-4036.

16. Freking B.A., Murphy S.K., Wylie A.A., Rhodes S.J., Keele J.W., Leymaster K.A., Jirtle R.L., Smith T.P.L. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 2002;12(10):1496-1506.

17. Gardner G.E., Williams A., Siddell J., Ball A.J., Mortimer S., Jacob R.H., Pearce K.L., Hocking Edwards J.E., Rowe J.B., Pethick D.W. Using Australian sheep breeding values to increase lean meat yield percentage. Anim. Prod. Sci. 2010;50(12):1098.

18. Goddard M.E., Hayes B.J. Genomic selection. J. Anim. Breed. Genet. Z. Für. Tierz. Zücht. 2007;124(6):323-330.

19. Gootwine E., Rozov A. Seasonal effects on birth weight of lambs born to prolific ewes maintained under intensive management. Livest. Sci. 2006;105(1-3):277-283.

20. Gootwine E., Sise J.A., Penty J.M., Montgomery G.W. The duplicated gene copy of the ovine growth hormone gene contains a PvuII polymorphism in the second intron. Anim. Genet. 1993;24(4):319-321.

21. Greenwood P.L., Davis J.J., Gaunt G.M., Ferrier G.R. Influences on the loin and cellular characteristics of the m. longissimus lumborum of Australian Poll Dorset-sired lambs. Aust. J. Agric. Res. 2006; 57(1):1.

22. Hopkins D.L., Toohey E.S., Lamb T.A., Kerr M.J., Ven R. van de, Refshauge G. Explaining the variation in the shear force of lamb meat using sarcomere length, the rate of rigor onset and pH. Meat Sci. 2011;88(4):794-796.

23. Jackson S.P., Green R.D., Miller M.F. Phenotypic characterization of rambouillet sheep expressing the callipyge gene: I. Inheritance of the condition and production characteristics. J. Anim. Sci. 1997a; 75(1):14-18.

24. Jackson S.P., Miller M.F., Green R.D. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: II. Carcass characteristics and retail yield. J. Anim. Sci. 1997b;75(1):125-132.

25. Jackson S.P., Miller M.F., Green R.D. Phenotypic characterization of rambouillet sheep expression the callipyge gene: III. Muscle weights and muscle weight distribution. J. Anim. Sci. 1997c;75(1): 133-138.

26. Johnson P.L., Dodds K.G., Bain W.E., Greer G.J., McLean N.J., McLaren R.J., Galloway S.M., Stijn T.C. van, McEwan J.C. Investigations into the GDF8 g+6723G-A polymorphism in New Zealand Texel sheep. J. Anim. Sci. 2009;87(6):1856-1864.

27. Kidwell M.G., Kidwell J.F., Sved J.A. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics. 1977;86(4):813-833.

28. Koohmaraie M. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie. 1992; 74(3);239-245.

29. Koohmaraie M., Shackelford S.D., Wheeler T.L., Lonergan S.M., Doumit M.E. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 1995;73(12):3596-3607.

30. Kossiakoff A.A. The structural basis for biological signaling, regulation, and specificity in the growth hormone-prolactin system of hormones and receptors. Adv. Protein Chem. 2004;68:147-169.

31. Lacroix M.C., Devinoy E., Cassy S., Servely J.L., Vidaud M., Kann G. Expression of growth hormone and its receptor in the placental and feto-maternal environment during early pregnancy in sheep. Endocrinology. 1999;140(12):5587-5597.

32. Lacroix M.C., Devinoy E., Servely J.L., Puissant C., Kann G. Expression of the growth hormone gene in ovine placenta: detection and cellular localization of the protein. Endocrinology. 1996;137(11): 4886-4892.

33. Lacroix M.C., Guibourdenche J., Fournier T., Laurendeau I., Igout A., Goffin V., Pantel J., Tsatsaris V., Evain-Brion D. Stimulation of human trophoblast invasion by placental growth hormone. Endocrinology. 2005;146(5):2434-2444.

34. Lacroix M.C., Guibourdenche J., Frendo J.L., Muller F., Evain-Brion D. Human placental growth hormone-a review. Placenta. 2002;23 (Suppl. A):S87-S94.

35. Lambe N.R., Richardson R.I., Macfarlane J.M., Nevison I., Haresign W., Matika O., Bünger L. Genotypic effects of the Texel Muscling QTL (TM-QTL) on meat quality in purebred Texel lambs. Meat Sci. 2011;89(2):125-132.

36. Liu G.-Q., Dai R., Ren H.-X., Wang X.-H., Liu S.-R., Sun Y.-L., Yang L.-G. [Polymorphism analysis of genes associated with hindquarters muscular development on chromosome 18 in Xinjiang meat sheep]. Yi Chuan Hered. Zhongguo Yi Chuan Xue Hui Bian Ji. 2006;28(7):815- 820.

37. Ma H., Yang H.Q., Takano E., Hatanaka M., Maki M. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin- like domain of the proteinase. J. Biol. Chem. 1994;269(39): 24430-24436.

38. Macfarlane J.M., Lambe N.R., Matika O., Johnson P.L., Wolf B.T., Haresign W., Bishop S.C., Bünger L. Effect and mode of action of the Texel muscling QTL (TM-QTL) on carcass traits in purebred Texel lambs. Anim. Int. J. Anim. Biosci. 2014;1-9.

39. MacIntosh B.R., Gardiner P.F., McComas A.J. Skeletal muscle: form and function. Champaign, IL: Human Kinetics, 2006.

40. Masri A.Y., Lambe N.R., Macfarlane J.M., Brotherstone S., Haresign W., Bünger L. Evaluating the effects of a single copy of a mutation in the myostatin gene (c.*1232G > A) on carcass traits in crossbred lambs. Meat Sci. 2011a;87(4):412-418.

41. Masri A.Y., Lambe N.R., Macfarlane J.M., Brotherstone S., Haresign W., Bünger L. Evaluating the effects of the c.*1232G > A mutation and TM-QTL in Texel × Welsh Mountain lambs using ultrasound and video image analyses. Small Rumin. Res. 2011b;99(2-3): 99-109.

42. Masri A.Y., Lambe N.R., Macfarlane J.M., Brotherstone S., Haresign W., Rius-Vilarrasa E., Bünger L. The effects of a loin muscling quantitative trait locus (LoinMAXTM) on carcass and VIA-based traits in crossbred lambs. Аnimal. 2010;4(03):407.

43. Matika O., Sechi S., Pong-Wong R., Houston R.D., Clop A., Woolliams J.A., Bishop S.C. Characterization of OAR1 and OAR18 QTL associated with muscle depth in British commercial terminal sire sheep: Characterization of sheep muscle depth QTL. Anim. Genet. 2011;42(2):172-180.

44. McRae A.F., Bishop S.C., Walling G.A., Wilson A.D., Visscher P.M. Mapping of multiple quantitative trait loci for growth and carcass traits in a complex commercial sheep pedigree. Anim. Sci. 2005; 80(02):135-141.

45. Moore R.K., Shimasaki S. Molecular biology and physiological role of the oocyte factor, BMP-15. Mol. Cell. Endocrinol. 2005;234(1-2): 67-73.

46. Murphy V.E., Smith R., Giles W.B., Clifton V.L. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr. Rev. 2006;27(2):141-169.

47. Nassiry M.R., Tahmoorespour M., Javadmanesh A., Soltani M., Foroutani F.S. Calpastatin polymorphism and its association with daily gain in Kurdi sheep. Iran J. Biotecnol. 2006;4:188-192.

48. Nicol L., Bishop S.C., Pong-Wong R., Bendixen C., Holm L.-E., Rhind S.M., McNeilly A.S. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction. 2009;138(6):921-933.

49. Ofir R., Gootwine E. Ovine growth hormone gene duplication – structural and evolutionary implications. Mamm. Genome. 1997;8(10): 770-772.

50. Palmer B.R., Morton J.D., Roberts N., Ilian M.A., Bickerstaffe R. Marker-assisted selection for meat quality and the ovine calpastatin gene. Proc. N. Z. Soc. Anim. Prod. 1999;59:266-268.

51. Palmer B.R., Roberts N., Hickford J.G., Bickerstaffe R. Rapid communication: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. J. Anim. Sci. 1998;76(5):1499-1500.

52. Phua S.H., Brauning R., Baird H.J., Dodds K. Identifying chromosomal selection-sweep regions in facial eczema selection-line animals using an ovine 50K-SNP array. Anim. Genet. 2014;45(2):240-247.

53. Piper L.R., Bell A.M., Ward K.A., Brown B.W. Effect of ovine growth hormone transgenesis on performance of Merino sheep at pasture. 1. Growth and wool traits to 12 months of age. Proc. Assoc. Adv. Anim. Breed. Gen. 2001;14:257-260.

54. Ray J., Okamura H., Kelly P.A., Cooke N.E., Liebhaber S.A. Human growth hormone-variant demonstrates a receptor binding profile distinct from that of normal pituitary growth hormone. J. Biol. Chem. 1990;265(14):7939-7944.

55. Reicher S., Niv-Spector L., Gertler A., Gootwine E. Pituitary and placental ovine growth hormone variants differ in their receptor-binding ability and in their biological properties. Gen. Comp. Endocrinol. 2008;155(2):368-377.

56. Reicher S., Seroussi E., Gootwine E. A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics. 2010;95(2): 101-104.

57. Rius-Vilarrasa E., Roehe R., Macfarlane J., Lambe N., Matthews K., Haresign W., Matika O., Bünger L. Effects of a quantitative trait locus for increased muscularity on carcass traits measured by subjective conformation and fat class scores and video image analysis in crossbred lambs. Anim. Int. J. Anim. Biosci. 2009;3(11):1532-1543.

58. Sazili A., Lee G., Parr T., Sensky P., Bardsley R., Buttery P. The effect of altered growth rates on the calpain proteolytic system and meat tenderness in cattle. Meat Sci. 2004;66(1):195- 201.

59. Shackelford S.D., Koohmaraie M., Cundiff L.V., Gregory K.E., Rohrer G.A., Savell J.W. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci. 1994;72(4):857-863.

60. Shackelford S.D., Koohmaraie M., Miller M.F., Crouse J.D., Reagan J.O. An evaluation of tenderness of the longissimus muscle of Angus by Hereford versus Brahman crossbred heifers. J. Anim. Sci. 1991a;69(1):171-177.

61. Shackelford S.D., Koohmaraie M., Whipple G., Wheeler T.L., Miller M.F., Crouse J.D., Reagan J.O. Predictors of beef tenderness: development and verification. J. Food Sci. 1991b;56(5):1130-1135.

62. Shackelford S.D., Wheeler T.L., Koohmaraie M. Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles. J. Anim. Sci. 1997;75(8):2100-2105.

63. Smit M., Segers K., Carrascosa L.G., Shay T., Baraldi F., Gyapay G., Snowder G., Georges M., Cockett N., Charlier C. Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype. Genetics. 2003;163(1): 453-456.

64. Soares M.J. The prolactin and growth hormone families: pregnancyspecific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2004;2:51.

65. Solomon G., Reicher S., Gussakovsky E.E., Jomain J.-B., Gertler A. Large-scale preparation and in vitro characterization of biologically active human placental (20 and 22K) and pituitary (20K) growth hormones: placental growth hormones have no lactogenic activity in humans. Growth Horm. IGF Res. 2006;16(5-6):297-307. Epub 2006 Sep 28.

66. Sorimachi H., Imajoh-Ohmi S., Emori Y., Kawasaki H., Ohno S., Minami Y., Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu- types. Specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 1989;264(33):20106-20111.

67. Suleman M. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds. Afr. J. Biotechnol. 2012;4(47):10655-10660.

68. Sun W., Hudson N.J., Reverter A., Waardenberg A.J., Tellam R.L., Vuocolo T., Byrne K., Dalrymple B.P. An always correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an “equivalent” bovine landscape. BMC Res. Notes. 2012;5(1):632.

69. Tait R.G., Shackelford S.D., Wheeler T.L., King D.A., Casas E., Thallman R.M., Smith T.P.L., Bennett G.L. μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies. J. Anim. Sci. 2014a;92(2):456-466.

70. Tait R.G., Shackelford S.D., Wheeler T.L., King D.A., Keele J.W., Casas E., Smith T.P.L., Bennett G.L. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 2014b;92(12): 5382-5393.

71. Tellam R.L., Cockett N.E., Vuocolo T., Bidwell C.A. Genes contributing to genetic variation of muscling in sheep. Front. Genet. 2012; 3:164.

72. The Bovine Genome Sequencing and Analysis Consortium, Elsik C.G., Tellam R.L., Worley K.C., Gibbs R.A., Muzny D.M., Weinstock G.M., Adelson D.L., Eichler E.E., Elnitski L., Guigó R., … , White S.N., Wilming L.G., Wunderlich K.R., Yang J., Zhao F.Q. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324(5926):522- 528.

73. The International Sheep Genomics Consortium, Archibald A.L., Cockett N.E., Dalrymple B.P., Faraut T., Kijas J.W., Maddox J.F., McEwan J.C., Hutton Oddy V., Raadsma H.W., Wade C., Wang J., Wang W., Xun X. The sheep genome reference sequence: a work in progress. Anim. Genet. 2010;41:449-453.

74. Tomita T. One-side cross sterility between inbred strains of mice. Jpn. J. Genet. 1960;35:291.

75. Valinsky A., Shani M., Gootwine E. Restriction fragment length polymorphism in sheep at the growth hormone locus is the result of variation in gene number. Anim. Biotechnol. 1990;1(2):135-144.

76. Walling G.A., Visscher P.M., Wilson A.D., McTeir B.L., Simm G., Bishop S.C. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. J. Anim. Sci. 2004;82(8): 2234-2245.

77. Wallis M., Lioupis A., Wallis O.C. Duplicate growth hormone genes in sheep and goat. J. Mol. Endocrinol. 1998;21(1):1-5.

78. Walsh S.T.R., Sylvester J.E., Kossiakoff A.A. The high- and low-affinity receptor binding sites of growth hormone are allosterically coupled. Proc. Natl Acad. Sci. USA. 2004;101(49):17078-17083.

79. Warner R.D., Greenwood P.L., Pethick D.W., Ferguson D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010;86(1): 171-183.

80. Whipple G., Koohmaraie M., Dikeman M.E., Crouse J.D., Hunt M.C., Klemm R.D. Evaluation of attributes that affect longissimus muscle tenderness in Bos taurus and Bos indicus cattle. J. Anim. Sci. 1990;68(9):2716-2728.

81. Zhang H.M., DeNise S.K., Ax R.L. Rapid communication: a novel DNA polymorphism of the bovine calpain gene detected by PCRRFLP analysis. J. Anim. Sci. 1996;74(6):1441.

82. Zhang L., Liu J., Zhao F., Ren H., Xu L., Lu J., Zhang S., Zhang X., Wei C., Lu G., Zheng Y., Du L. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE. 2013; 8(6):e66569.


Review

Views: 1088


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)