Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Генетическое разнообразие трех вирусов яблони, выделенных в Беларуси

https://doi.org/10.18699/VJ16.187

Полный текст:

Аннотация

Вирус хлоротической пятнистости листьев яблони (ACLSV), вирус ямчатости древесины яблони (ASPV) и вирус бороздчатости древесины яблони (ASGV) распространены во всех странах, где возделывается яблоня. В данной работе исследовалось генетическое разнообразие этих патогенов на территории Беларуси. Зараженные различными вирусными инфекциями деревья были обнаружены с помощью метода ОТ-ПЦР в современных садовых насаждениях. Среди старых деревьев, возрастом более 50 лет, зараженных не выявлено. Фрагменты геномов вирусов ACLSV, ASPV и ASGV были клонированы и секвенированы. Анализ их нуклеотидных последовательностей свидетельствует о высокой молекулярной вариабельности, сформированной за счет однонуклеотидных замен, реже – однонуклеотидных делеций и инсерций. Некоторый вклад в существующее генетическое разнообразие популяции вирусов также могли вносить и рекомбинационные процессы. Оценка селекционного давления на фрагменты геномов ACLSV, ASPV и ASGV, полученные в настоящем исследовании, а также гомологичные последовательности из базы данных GenBank свидетельствует о том, что они находятся под воздействием отрицательной селекции, за исключением одного кодона в последовательности белка оболочки ACLSV, находящегося под воздействием положительной селекции. При исследовании филогенетических взаимоотношений изолятов вирусов, выделенных в разных странах, четкой зависимости между географическим происхождением и степенью идентичности фрагментов геномов вирусов выявлено не было.

Об авторах

П. В. Кузмицкая
Государственное научное учреждение «Институт генетики и цитологии НАН Беларуси»
Беларусь
Минск, Республика Беларусь


О. Ю. Урбанович
Государственное научное учреждение «Институт генетики и цитологии НАН Беларуси»
Беларусь
Минск, Республика Беларусь


Список литературы

1. Callaway A., Giesman-Cookmeyer D., Gillock E.T., Sit T.L., Lommel S.A. The multifunctional capsid proteins of plant RNA viruses. Annual Review Phytopathology. 2001;39:419-460. DOI 10.1146/annurev.phyto.39.1.419.

2. Campbell A.I. The effect of some latent virus infections of the growth and cropping apples. J. Horticultural Sciences. 1963;38:15-19. DOI 10.1080/00221589.1963.11514054.

3. Candresse T., Lanneau M., Revers F., Grasseau N., Macquaire G., German S., Malinowski T., Dunez J. An immuno-capture PCR assay adapted to the detection and the analysis of the molecular variability of the apple chlorotic leaf spot virus. Acta Horticulturae. 1995;386: 136-147. DOI 10.17660/ActaHortic.1995.386.17.

4. Chare E.R., Holmes E.C. Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. J. General Virology. 2004;2004:3149-3157. DOI 10.1099/vir.0.80134- 0.

5. Clover G.R.G., Pearson M.N., Elliot D.R., Tang Z., Smales T.E., Alexander B.J.R. Characterization of a strain of Apple stem grooving virus in Actinidia chinesis from China. Plant Pathol. J. 2003;52: 371-378. DOI 10.1046/j.1365-3059.2003.00857.x.

6. Combe M., Sanjuan R. Variation in RNA virus mutation rates across host cells. PLOS. Pathogens. 2014;10:1-7. DOI 10.1371/journal.ppat.1003855.

7. Doningo E. Quasispecies theory in virology. J. Virol. 2002;76:463-465. DOI 10.1128/JVI.76.1.463-465.2002.

8. Drummond A., Pybus O.G., Rambaut A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitology. 2003;54:331-358. DOI 10.1016/S0065-308X(03)54008-8.

9. German-Retana S., Bergey B., Delbos R.P., Candresse T., Dunez J. Complete nucleotide sequence of the genome of a severe cherry isolate of apple chlorotic leaf spot trichovirus (ACLSV). Archives Virology. 1997;142:833-841. DOI 10.1007/s007050050122.

10. Gospodaryk A., Budzanivska I., Demyanenko F., Polischuk V. Distribution of apple latent viruses in Kiev region. Vestnik Kievskogo natsionalnogo universiteta im. T. Shevchenko. Seriya Biologiya = Bulletin of Taras Shevchenko National University of Kyiv. Biology. 2008;51:25-27.

11. Hassan M., Myrta A., Polak J. Simultaneous detection and identification of four pome fruit viruses by one-tube pentaplex RT-PCR. J. Virological Methods. 2006;133:124-129. DOI 10.1016/j.jviromet.2005.11.002.

12. Komorowska B., Siedlecki P., Kaczanowski S., Hasiów-Jaroszewska B., Malinowski T. Sequence diversity and potential recombination events in the coat protein gene of Apple stem pitting virus. Virus Res. 2011;158:263-267. DOI 10.1016/j.virusres.2011.03.003.

13. Kosakovsky Pond S.L., Frost S.D.W. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005a;21:2531-2533. DOI: 10.1093/bioinformatics/bti320.

14. Kosakovsky Pond S.L., Frost S.D.W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005b;22(5):1208-1222. DOI 10.1093/molbev/msi105.

15. Kosakovsky Pond S.L., Frost S.D.W., Grossman Z., Gravenor M.B., Richman D,D., Leigh Brown A.J. Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLOS. Computational Biology. 2006a;2(6):530-538. DOI 10.1371/journal.pcbi.0020062.

16. Kosakovsky Pond S.L., Posada D., Gravenor M.B., Woelk C.H., Frost S.D.W. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 2006b;23(10):1891-1901. DOI 10.1093/molbev/msl051.

17. Liebenberg A., Moury B., Sabath N., Hell R., Kappis A., Jarausch W., Wetzel T. Molecular evolution of the genomic RNA of Apple stem grooving capillovirus. J. Mol. Evol. 2012;75(3- 4):92-101. DOI 10.1007/s00239-012-9518-z.

18. Liu P., Li Z., Song S., Yunfeng Wu Y. Molecular variability of Apple chlorotic leaf spot virus in Shaanxi, China. Phytoparasitica.2014;42:445-454. DOI 10.1007/s12600-013-0381-2.

19. Lovisolo O., Accotto G.P., Masenga V., Colaricco A. An isolate of Apple stem grooving virus associated with Cleopatra mandarin fruit intumescences. Fitopatologia Brasiliera. 2003;28:54-58.

20. Lu R., Folimonov A., Shinataku M., Li W.X., Falk W.B., Dawson W.O., Ding S.-W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. PNAS. 2004;101:15742-15747. DOI 10.1073/pnas.0404940101.

21. Menzel W., Jelkmann W., Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virological Methods. 2002;99:81-92. DOI 10.1016/S0166-0934(01)00381-0.

22. Niu F., Pan S., Wu Z., Jiang D., Li S. Complete nucleotide sequences of the genomes of two isolates of apple chlorotic leaf spot virus from peach (Prunus persica) in China. Arch. Virol. 2012;157:783-786. DOI 10.1007/s00705-011-1195-5.

23. Paduch-Cichal E., Szyndel M.S., Tomala K. Preliminary results of the study on viruses occurring in ‘Mutsu’ apple cultivar trees. Phytopathol. Pol. 2005;37:87-90.

24. Poniedziałek W., Nosal K., Porębski S., Banach P. Evaluation of ‘Jonagold’ apple trees on M9 rootstock produced in different nurseries. Folia Horticulturae. 2001;13/2:23-29.

25. Pūpola N., Moročko-Bičevska I., Kāle A., Zeltiņš A. Occurrence and diversity of pome fruit viruses in apple and pear orchards in Latvia. J. Phytopathol. 2011;159(9):597-605. DOI 10.1111/j.1439-0434.2011.01812.x.

26. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4(4):406-425.

27. Schneider W.L., Roossinck M.J. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virology. 2001;75(14):6566-6571. DOI 10.1128/JVI.75.14.6566- 6571.2001.

28. Shim H., Min Y., Hong S., Kwon M., Kim D., Kim H., Choi Y., Lee S., Yang J. Nucleotide sequences of a Korean isolate of Apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Moleculars and Cells. 2004;18:192-199.

29. Sirotkin Ye.N. Apple latent virus spreading in Central Chernozem region. AgroXXI = AgroXXI. 2012;4-6:19-21.

30. Stankienė J., Mažeikienė I., Gelvonauskienė D., Šikšnianienė J.B., Bobinas Č. Virological assessment of stock planting material of apple and raspberry cultivars. Žemdirbystė = Agriculture. 2012;99: 93-98.

31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013;30(12):2725-2729. DOI 10.1093/molbev/mst197.

32. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994;22(22):4673-4680. DOI 10.1093/nar/22.22.4673.

33. Yaegashi H., Isogai M., Tajima H., Sano T., Yoshikawa N. Combinations of two amino acids (Ala40 and Phe75 or Ser40 and Tyr75) in the coat protein of Apple chlorotic leaf spot virus are crucial for infectivity. J. General Virology. 2007;88:2611-2618. DOI 10.1099/vir.0.82984- 0.

34. Yoon J.Y., Joa J.H., Choi K.S., Do K.S., Lim H.C., Chung B.N. Genetic diversity of a natural population of Apple stem pitting virus isolated from apple in Korea. Plant Pathol. J. 2014;30(2):195-199. DOI 10.5423/ppj.nt.02.2014.0015.

35. Youssef S.A., Moawad S.M., Nosseir F.M., Shalaby A.A. Detection and identification of Apple stem pitting virus and Apple stem grooving virus affecting apple and pear trees in Egypt. Julius-Kühn-Archiv. 2010;427:248-250.

36. Zawadzka B. The influence of virus and mycoplasma diseases on frost damage of apple trees. Acta Horticulturae. 1989;235:59-67. DOI 10.17660/ActaHortic.1989.235.7.


Просмотров: 119


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)