Гетерозис: современные тенденции в изучении молекулярных механизмов


https://doi.org/10.18699/VJ16.188

Полный текст:


Аннотация

Гетерозис как феномен превосходства гибридов F1 над родителями служит основным механизмом повышения продуктивности в сельскохозяйственном производстве, но при этом остается одним из наиболее интригующих явлений с точки зрения генетики. Первые попытки выяснения его генетических основ базировались на использовании теоретических моделей, которые, хотя и были приняты научным сообществом, но не могли в полной мере охарактеризовать это уникальное явление. С разработкой и распространением молекулярных маркеров основные усилия были направлены на поиск геномных регионов, ответственных за формирование гетеротического ответа в F1, и выяснение перспектив использования оценки молекулярной дивергенции исходных родительских форм для предсказания урожайного потенциала гибридного потомства. Несмотря на некоторые успехи, эффективность такого подхода для практического использования оказалась ограниченной. Выполненные исследования подтвердили, что генетическая гетерогенность необходима, но не достаточна для получения гетерозисного фенотипа. Развитие современных методологических подходов функциональной геномики и смежных дисциплин обеспечило новые возможности для изучения основополагающих механизмов гетерозиса на уровне генома, транскриптома, метаболома и эпигенома в связи с различными типами взаимодействия генов (доминированием, сверхдоминированием, эпистазом). К настоящему времени описаны различия в геномной организации, генной экспрессии и эпигенетическом статусе гибридов F1 и их родителей. На геномном уровне обнаружены QTL, ассоциированные с гетерозисом, изучена роль дивергенции ДНК в реализации генетического потенциала F1. На уровне транскриптома у гибридов, по сравнению с инбредными родителями, выявлены изменения в регуляции экспрессии генов, осуществляемой с участием генов циркадных часов. Опре-делена важная роль эпигенетической модификации ДНК и геномного импринтинга в проявлении гетерозиса. Вся совокупность данных, накопленных к настоящему времени, свидетельствует о том, что гетерозис невозможно объяснить единственным общим механизмом, так как этот сложный феномен включает множественные компоненты, кумулятивный эффект которых приводит к формированию выдающегося фенотипа.


Об авторах

М. Н. Шаптуренко
Институт генетики и цитологии Национальной академии наук Беларуси
Беларусь
Минск, Беларусь


Л. В. Хотылева
Институт генетики и цитологии Национальной академии наук Беларуси
Беларусь
Минск, Беларусь


Список литературы

1. Barber W.T., Zhang W., Win H., Varala K.K., Dorweiler J.E., Hudson M.E., Moose S.P. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl Acad. Sci. USA. 2012;109:10444-10449. DOI 10.1073/PNAS.1202073109.

2. Basunanda P., Radoev M., Ecke W., Fridt W., Becker H.C., Snowdon R.J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 2010;120:271-281. DOI 10.1007/s00122-009-1133-z.

3. Bauer M.J., Fischer R.L. Genome demethylation and imprinting in the endosperm. Curr. Opin. Genet. Dev. 2011;14:162-167. DOI 10.1016/J.PBI.2011.02.006.

4. Bingham E.T., Groose R.W., Woodfield D.R., Kidwell K.K. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994;34:823-829. DOI 10.2135/cropsci1994.0011183X003400040001x.

5. Brachi B., Faure N., Horton M., Flahauw E., Vazquez A., Nordborg M. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 2010;6:e1000940. http://dx.doi.org/10.1371/journal.pgen.1000940.

6. Chapman E.J., Carrington J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 2007;8:884-896. DOI 10.1038/nrg2179.

7. Chen W., Zhang Y., Liu X.P., Chen B.Y., Tu J.X., Fu T.D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immottalized F2 population. Theor. Appl. Genet. 2007;115(6):849-858. DOI 10.1007/s00122-007-0613-2.

8. Chen X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 2009;25:21-44. DOI 10.1146/annurev.cellbio.042308.113417.

9. Chen Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 2010;15(2):57. DOI 10.1016/j.tplants.2009.12.003.

10. Cowen N.M., Frey K.J. Relationship between genealogical distance and breeding behaviour in oats (Avena sativa L.). Euphytica. 1987;36(2):413-424. DOI 10.1007/BF00041484.

11. Cox T., Kiang Y., Gorman M., Rodgers D. Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci. 1984;25:529-532. DOI 10.2135/cropsci1985.0011183X002500030023x.

12. Ding H., Qin Ch., Luo X., Li L., Ch Z., Liu H., Gao J., Lin H., Shen Y., Zhao M., Lübberstedt Th., Zhang Zh., Pan G. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two Maize inbred lines and their hybrid. Int. J. Mol. Sci. 2014;15:13892-13915. DOI 10.3390/ijms150813892.

13. Falconer D.S., Mackay T.F. Introduction to quantitative Genetics. London: Longman Group Ltd, 1996.

14. Fang R.Q., Li L.Y., Li J.X. Spatial and temporal expression modes of microRNAs in an elite rice hybrid and its parental lines. Planta. 2013;238(2):259-269. DOI 10.1007/s00425-013-1881-5.

15. Flis A., Fernández A.P., Zielinski T., Mengin V., Sulpice R., Stratford K., Hume A., Pokhilko A., Southern M.M., Seaton D.D., Mc- Watters H.G., Stitt M., Halliday K.J., Millar A.J. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biol. 2015;5(10):150042. DOI 10.1098/rsob.150042.

16. Garcia A.A., Wang S., Melchinger A.E., Zeng Z.B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics. 2008;180:1707-1724. DOI 10.1534/genetics.107.082867.

17. Garnier O., Laouielle-Duprat S., Spillane C. Genomic imprinting in plants. Adv. Exp. Med. Biol. 2008;626:89-100.

18. Gehring M., Bubb K.L., Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009;324(5933):1447-1451. DOI 10.1126/science.1171609.

19. Goodman M., Lasker G. Measurement of distance and propinquity in anthropological studies. Eds. J. Crow, C. Denniston. Genetic Distance. New York: Plenum Press, 1974;5-21. DOI 10.1007/978-1-4684-2139-2_2.

20. Goodspeed D., Chehab E., Min-Venditti A., Braam J., Covington M. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc. Natl Acad. Sci. USA. 2012;109(12):4674-4677. DOI 10.1073/pnas.1116368109.

21. Graf A., Schlereth A., Stitt M., Smith A. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl Acad. Sci. USA. 2010;107:9458-9463. DOI 10.1073/pnas.0914299107.

22. Greaves I.K., Groszmann M., Ying H., Taylor J.M., Peacock W.J., Dennis E.S. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl Acad. Sci. USA. 2012;109:3570- 3575. DOI 10.1073/pnas.1201043109.

23. Groszmann M., Greaves I.K., Albert N., Fujimoto R., Helliwell C.A., Dennis E.S., Peacock W.J. Epigenetics in plants – vernalisation and hybrid vigour. Biochem. Bioph. Acta. 2011a;1809:427-437. DOI 10.1016/j.bbagrm.2011.03.006.

24. Groszmann M., Greaves I.K., Albertyn Z.I., Scofield G.N., Peacock W.J., Dennis E.S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl Acad. Sci. USA. 2011b;108(6):2617-2622. DOI 10.1073/pnas.1019217108.

25. Gumber R.K., Schill B., Link W., von Kittlitz E., Melchinger A.E. Mean, genetic variance, and usefulness of selfing progenies from intra- and inter-pool crosses in faba beans (Vicia faba L.) and their prediction from parental parameters. Theor. Appl. Genet. 1999;98:569-580. DOI 10.1007/s001220051106.

26. Haag J.R., Pikaard C.S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011;12(8):483-492. DOI 10.1038/nrm3152.

27. Harmer S.L., Hogenesch J.B., Straume M., Chang H.-S., Han B., Zhu T., Wang X., Kreps J.A., Kay S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000;290(5499):2110-2113. DOI 10.1126/science.290.5499.2110.

28. He G., He H., Wang Deng X. Epigenetic variations in plant hybrids and their potential roles in heterosis. J. Genet. Genomics. 2013;40(5): 205e210. DOI 10.1016/j.jgg.2013.03.011.

29. He G.M., Zhu X.P., Elling A.A., Chen L.B., Wang X.F., Guo L., Liang M.Z., He H., Zhang H.Y., Chen F.F., Qi Y.J., Chen R.S., Deng X.W. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22: 17-33. DOI 10.1105/tpc.109.072041.

30. Helfer A., Nusinow D.A., Chow B.Y., Gehrke A.R., Bulyk M.L., Kay S.A. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 2011;21:126-133. DOI 10.1016/j.cub.2010.12.021.

31. Hsieh T.F., Shin J., Uzawa R., Silva P., Cohen S., Bauer M.J., Hashimoto M., Kirkbride R.C., Harada J.J., Zilberman D., Fischer R.L. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl Acad. Sci. USA. 2011;108(5):1755-1762. DOI 10.1073/pnas.1019273108.

32. Huang Y., Zhang L., Zhang J., Yuan D., Xu C., Li X., Zhou D., Wang S., Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol. Biol. 2006;62:579-591. DOI 10.1007/s11103-006- 9040-z.

33. Jullien P.E., Berger F. Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr. Opin. Plant Biol. 2009;12(5):637-642. DOI 10.1016/j.pbi.2009.07.004.

34. Kempthorne O. An Introduction to Genetic Statistics.: Ames, Iowa: Iowa State Univ. Press, 1969.

35. Kim W.Y., Fujiwara S., Suh S.S., Kim J., Kim Y., Han L., David K., Putterill J., Nam H.G., Somers D.E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 2007; 449(7160):356-360. DOI 10.1038/nature06132.

36. Köhler C., Weinhofer-Molisch I. Mechanisms and evolution of genomic imprinting in plants. Heredity. 2010;105(13):57-63. DOI 10.1093/jxb/ers145.

37. Landry C.R., Lemos B., Rifkin S.A., Dickinson W.J., Hartl D.L. Genetic properties influencing the evolvability of gene expression. Science. 2007;317:18-21. DOI 10.1126/science.1140247.

38. Lauria M., Rupe M., Guo M., Kranz E., Pirona R., Viotti A., Lund G. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell. 2004;16(2):510-522. DOI 10.1105/tpc.017780.

39. Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010;11:204-220. DOI 10.1038/nrg2719.

40. Lisec J., Steinfath M., Meyer R.C., Selbig J., Melchinger A.E., Willmitzer L., Altmann T. Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Plant J. 2009;59(5):777-788. DOI 10.1111/j.1365-313X.2009.03910.x.

41. Lu J., Zhang C., Baulcombe D.C., Chen Z.J. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc. Natl Acad. Sci. USA. 2012;109: 5529-5534. DOI 10.1073/pnas.1203094109.

42. Luo M., Taylor J.M., Spriggs A., Zhang H., Wu X., Russell S., Singh M., Koltunow A. A genome- wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet. 2011;7(6):e1002125. DOI 10.1371/journal.pgen.

43. Malapeira J., Khaitova L.C., Mas P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA. 2012;109(52):21540-21545. DOI 10.1073/pnas.1217022110.

44. Manjarrez-Sandoval P., Carter T.E., Webb D.M., Burton J.W. RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield. Crop Sci. 1997;37(3):698-703. DOI 10.2135/cropsci1997.0011183X003700030002x.

45. Melchinger A.E., Gumber R.K., Leipert R.B., Vuylsteke M., Kuiper M. Prediction of testcross means and variances among F3 progenies of F1 crosses from testcross means and genetic distances of their parents in maize. Theor. Appl. Genet. 1998;96(3-4):503-512. DOI 10.1007/s001220050767.

46. Meyer R.C., Kusterer B., Lisec J., Steinfath M., Becher M., Scharr H., Melchinger A.E., Selbig J., Schurr U., Willmitzer L., Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor. Appl. Genet. 2010;120(2):227-237. DOI 10.1007/s00122-009-1074-6.

47. Michael T.P., Breton G., Hazen S.P., Priest H., Mockler T.C., Kay S.A., Chory J. A morning- specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 2008a;6(9):e225.DOI 10.1371/journal.pbio.0060225.

48. Michael T.P., Mockler T.C., Breton G., McEntee C., Byer A., Trout J.D., Hazen S.P., Shen R., Priest H.D., Sullivan C.M., Givan S.A., Yanovsky M., Hong F., Kay S.A., Chory J. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 2008b;4(2):e14. DOI 10.1371/journal.pgen.0040014.

49. Mikkelsen M.D., Thomashow M.F. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009;60(2):328-339. DOI 10.1111/j.1365313X.2009.03957.x.

50. Miller M., Zhang Ch., Chen Z.J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3: Genes. Genomes. Genetics. 2012;2(4):505-513. DOI 10.1534/g3.112.002162.

51. Mosher R.A., Melnyk C.W. siRNAs and DNA methylation: Seedy epigenetics. Trends Plant Sci. 2010;15(4):204-210. DOI 10.1016/j.tplants.2010.01.002.

52. Mosher R.A., Melnyk Ch.W., Kelly K.A., Dunn R.M., Studholme D.J., Baulcombe D.C. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of rabidopsis. Nature. 2009;460:283-286. DOI 10.1038/nature08084.

53. Nei M. A new measure of genetic distance. Eds. J. Crow, C. Denniston. Genetic Distance. New York: Plenum Press, 1974;63-76.

54. Ng D., Lu J., Chen Z. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant Biol. 2012; 15(2):154-161. DOI 10.1016/j.pbi.2012.01.007.

55. Ni Z.F., Kim E.D., Ha M., Lackey E., Liu J.X., Zhang Y.R., Sun Q.X., Chen Z.J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature. 2009;457:327-331. DOI 10.1038/nature07523.

56. Nusinow D.A., Helfer A., Hamilton E.E., King J.J., Imaizumi T., Schultz T.F., Farré E.M., Kay S.A. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature. 2011;475:398-402. DOI 10.1038/nature10182.

57. Ong-Abdullah M., Ordway J.M., Jiang N., Ooi S.-E., Kok S.-Y., Sarpan N., Azimi N., Hashim A.T., Ishak Z., Rosli S.K., Malike F.A., Bakar N.A., Marjuni M., Abdullah N., Yaakub Z., Amiruddin M.D., Nookiah R., Singh R., Low E.-T., Chan K.-L., Azizi N., Smith S.W., Bacher B., Budiman M.A., Brunt A., Wischmeyer C., Beil M., Hogan M., Lakey N., Lim C., Arulandoo X., Wong C., Choo Ch., Wong W., Kwan Y., Alwee S., Sambanthamurthi R., Martienssen R. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. 2015;525:533-537. DOI 10.1038/nature15365.

58. Orlovskaya O.A., Koren L.V., Khotyleva L.V. Impact of parents genetic divergence on heterosis of F1-hybrids of spring triticale. Ekologicheskaya genetika = Ecological genetics (Saint-Petersburg). 2012;Х(3):3-9. (in Russian)

59. Pokhilko A., Fernandez A.P., Edwards K.D., Southern M.M., Halliday K.J., Millar A.J. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol. Syst. Biol. 2012; 8:574. DOI 10.1038/msb.2012.6.

60. Pokhilko A., Hodge S.K., Stratford K., Knox K., Edwards K.D., Thomson A.W., Mizuno T., Millar A.J. Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol. Syst. Biol. 2010;6:416. DOI 10.1038/msb.2010.69.

61. Quijada P.A., Udall J.A., Lambert B., Osborn T.C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): Identification of genomic regions from winter germplasm. Theor. Appl. Genet. 2006;113(3):549-561. DOI 10.1007/s00122-006-0323-1.

62. Radoev M., Becker H.C., Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics. 2008;179(3):1547-1558. DOI 10.1534/genetics.108.089680.

63. Raissig M.T., Baroux C., Grossniklaus U. Regulation and flexibility of genomic imprinting during seed development. Plant Cell. 2011; 23(1):16-26. DOI 10.1105/tpc.110.081018.

64. Reif J.C., Hahn V., Melchinger A.E. Genetic basis of heterosis and prediction of hybrid performance. Helia. 2012;35(57):1-8. DOI 10.2298/hel1257001r.

65. Reinders J., Wulff B., Mirouze M., Mari-Ordonez A., Dapp M., Rozhon W., Bucher E., Theiler G., Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Gene. Dev. 2009;23(8):939-950. DOI 10.1101/gad.524609.

66. Ronald J., Akey J.M. The evolution of gene expression QTL in Saccharomyces cerevisiae. PLoS ONE. 2007;2:e678. DOI 10.1371/journal.pone.0000678.

67. Ryder P., McKeown P.C., Fort A., Spillane Ch. Epigenetics and heterosis in crop plants. Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Transcriptional Regulation and Chromatin Remodeling in Plants. Eds. R. Alvarez-Venegas, C. De la Pena, J.A. Casas-Mollano. 2014;X:13-31.

68. Schön C.C., Dhillon B.S., Utz H.F., Melchinger A.E. High congruency of QT position for heterosis of grain yield in three crosses of maize. Theor. Appl. Genet. 2010;120(2):321-332. DOI 10.1007/s00122-009-1209-9.

69. Semel Y., Nissenbaum J., Menda N., Zinder M., Krieger U. Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl Acad. Sci. USA. 2006;103(35):12981-12986. DOI 10.1073/pnas.0604635103.

70. Shapturenko M.N., Jakimovich A.V., Zabara Yu.M., Khotyleva L.V. The contribution of molecular-genetic divergence to F1 hybrid performance of white cabbage. Doklady NAN Belarusi = Reports of the National Academy of Sciences of Belarus. 2014b;58(5):80-86. (in Russian)

71. Shapturenko M., Kudelko L., Yatsevich A., Khotyleva L.V. Formation of new original material based on the genetic heterogeneity of the disomic offspring of aneuploids wheat plant. Russ. J. Genet. 2003; 39(11):1265-1270. DOI 10.1023/B:RUGE.0000004142.24920.d3.

72. Shapturenko M.N., Pechkovskaya T.V., Vakula S.I., Jakimovich A.V., Zabara Yu. M., Khotyleva L.V. Informative EST-SSR markers for genotyping and intraspecific differentiation of Brassica oleracea var. capitata L. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(1):51-56. DOI 10.18699/VJ16.133. (in Russian)

73. Shapturenko M.N., Tarutina L.A., Mishin L.A., Kilchevsky A.V., Khotyleva L.V. DNA divergence as a criterion of a Sweet Pepper (Capsicum annuum L.) selection for heterosis. Russ. J. Genet. 2014; 50(2):138-146. DOI 10.1134/S1022795414020148.

74. Shapturenko M.N., Tarutina L.A., Mishin L.A., Kubrak S.V., Kilchevsky A.V., Khotyleva L.V. Prediction of F1 progeny variation in tomato (Solanum lycopersicum L.) from parental divergence assessed by SSR markers. Ekologicheskaya genetika = Ecological genetics (Saint- Petersburg). 2014a;XII(3):3-11. (in Russian)

75. Shapturenko M.N., Tarutina L.A., Mishin L.A., Kubrak S.V., Kilchevsky A.V., Khotyleva L.V. Association of differential DNA polymorphism in tomato (Solanum lycopersicum L.) and the heterotic potential of F1 hybrids. Doklady NAN Belarusi = Reports of the National Academy of Sciences of Belarus. 2016б; 50(5):101-107. (in Russian)

76. Shapturenko M., Vakula S., Tarutina L., Mishin L., Khotyleva L. MSAP-analysis of differential DNA methylation of lines and F1 hybrids of sweet pepper (Capsicum annuum L.). Materialy II Mezhdunarodnoy nauchnoy konferentsii «Genetika i biotekhnologiya XXI veka: problemy, dostizheniya, perspektivy». Minsk, Belarus (13-16 oktyabrya 2015) [Proc. 2nd Int. Sci. Conf. “Genetics and biotechnology of the XXI century: problems, achievements, and prospects”. Minsk, Belarus (13-16 October 2015)]. Minsk, Tekhnologiya Publ., 2015. (in Russian)

77. Shen G., Hu W., Zhang B., Xing Y. The regulatory network mediated by circadian clock genes is related to heterosis in rice. J. Integr. Plant Biol. 2015;57(3):300-312. DOI 10.1023/B:RUGE.0000004142.24920.d3.

78. Shen H., He H., Li J. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell. 2012;24(3):875-892. DOI 10.1105/tpc.111.094870.

79. Shivaprasad P.V., Dunn R.M., Santos B.A., Bassett A., Baulcombe D.C. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 2012; 31(2):257-266. DOI 10.1038/emboj.2011.458.

80. Song G.S., Zhai H.L., Peng Y.G., Zhang L., Wei G., Chen X.Y., Xiao Y.G., Wang L., Chen Y.J., Wu B., Chen B., Zhang Y., Chen H., Feng X.J., Gong W.K., Liu Y., Yin Z.J., Wang F., Liu G.Z., Xu H.L., Wei X.L., Zhao X.L., Ouwerkerk P.B., Hankemeier T., Reijmers T., van der Heijden R., Lu C.M., Wang M., van der Greef J., Zhu Z. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant. 2010;3(6):1012-1025. DOI 10.1093/mp/ssq046.

81. Springer N.M. Small RNAs: How seeds remember to obey their mother. Curr. Biol. 2009;19(15):649-651. DOI 10.1016/j.cub.2009.06.049.

82. Springer N.M., Gutierrez-Marcos J. Imprinting in maize. The Maize Handbook. Eds S. Hake, J. Bennetzen. New York: Springer, 2009: 429-440.

83. Stuber C.W., Lincoln S.E., Wolff D.W., Helentjaris T., Lander E.S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992;132:823-839.

84. Stupar R.M., Springer N.M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics. 2006;173:2199-2210. DOI 10.1534/genetics.106.060699.

85. Udall J.A., Quijada P.A., Lambert B., Osborn T.C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): Identification of alleles from unadapted germplasm. Theor. Appl. Genet. 2006;113:597-609. DOI 10.1007/s00122- 006-0324-0.

86. Vuylsteke M., Eeuwijk F., Hummelen P., Kuiper M., Zabeau M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics. 2005;171:1267-1275. DOI 10.1534/genetics.105.041509.

87. Wang W., Barnaby J., Tada Y., Li H., Tör M., Caldelari D., Lee D., Fu X., Dong X. Timing of plant immune responses by a central circadian regulator. Nature. 2011;470:110-114. DOI 10.1038/nature09766.

88. Waters A.J., Makarevitch I., Eichten S.R., Swanson-Wagner R.A., Yeh C.-T., Xu W., Schnable P.S., Vaughn M.W., Gehring M., Springer N.M. Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell. 2011;23:4221-4233. DOI 10.1105/tpc.111.092668.

89. Wittkopp P.J. Genomic sources of regulatory variation in cis and in trans. Cell Mol. Life Sci. 2005;62:1779-1783. DOI 10.1007/s00018-005-5064-9.

90. Wolff P., Weinhofer I., Seguin J., Roszak P., Beisel C., Donoghue M., Spillane C., Nordborg M., Rehmsmeier M., Köhler C. High-resolution analysis of parent-oforigin allelic expression in the Arabidopsis endosperm. PLoS Genet. 2011;7:e1002126. DOI 10.1371/journal.pgen.1002126.

91. Zemach A., Kim M.Y., Silva P., Rodrigues J.A., Dotson B., Brooks M.D., Zilberman D. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl Acad. Sci. USA. 2010;107:18729-18734. DOI 10.1073/pnas.1009695107.

92. Zhang H., Hea H., Chen L., Li L., Liang M., Wang X., Liu X., He G., Chen R., Ma L., Deng X.W. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol. Plant. 2008;1(5):720-731. DOI 10.1093/mp/ssn022.

93. Zhang X.Y., Yazaki J., Sundaresan A., Cokus S., Chan S.W.L., Chen H.M., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E., Ecker J.R. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006;126(6): 1189-1201. http://dx.doi.org/10.1016/j.cell.2006.08.003.

94. Zhao X.X., Chai Y., Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci. 2007;172:930-938. DOI 10.1016/j.plantsci.2007.01.002.


Дополнительные файлы

Просмотров: 143

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)