Выявление новых регуляторных SNP, ассоциированных с предрасположенностью к развитию колоректального рака
https://doi.org/10.18699/VJ16.197
Аннотация
Разработан новый подход к поиску регуляторных SNP (rSNP), основанный на анализе ChIP-seq и RNA-seq данных проекта ENCODE. Подход успешно применен для выявления rSNP, связанных с колоректальным раком. В качестве исходных данных были взяты результаты 15 независимых ChIP-Seq экспериментов, выполненных на клеточной линии колоректального рака HCT-116, что позволило сформировать пул из 7985 SNP, расположенных в регуляторных районах генов. Для дальнейшего отбора регуляторных SNP из этого пула использована выявляемая в экспериментах ChIP-seq аллель-специфичность распределения гистоновых меток и негистоновых белков хроматина в местах локализации гетерозиготных SNP. Это позволило выявить 775 SNP, которые потенциально могут влиять на уровень экспрессии генов в клетках HCT-116. В дальнейшем была проведена оценка асимметричности экспрессии аллелей на основании данных RNA-seq, полученных на той же клеточной линии. В результате была подтверждена функциональность 231 SNP, которые были классифицированы как rSNP. Для отбора из них тех, что могут иметь отношение к развитию колоректального рака, были взяты rSNP, находящиеся в одной группе сцепления (±10 т. п. н.) с SNP, ассоциированными с этим заболеванием, по данным GWAS и ClinVar. Функциональная аннотация генов, содержащих выбранные таким образом SNP, подтвердила полученные ранее данные о роли генов BAIAP2L1 и BUB3 в формировании предрасположенности к раку толстого кишечника. Также были обнаружены новые гены-кандидаты колоректального рака, RRAGD и FZD6, белковые продукты которых являются компонентами RAS/MAРK- и WNT-сигнальных путей, сопряженных с развитием данной патологии. Кроме того, выявлено 14 новых потенциальных генов-кандидатов колоректального рака, перспективных для дальнейшего изучения.
Об авторах
Е. Ю. ЛеберфарбРоссия
Новосибирск, Россия
Л. О. Брызгалов
Россия
Новосибирск, Россия
И. И. Брусенцов
Россия
Новосибирск, Россия
Т. И. Меркулова
Россия
Новосибирск, Россия
Список литературы
1. Al-Tassan N., Chmiel N.H., Maynard J., Fleming N., Livingston A.L., Williams G.T., … Cheadle J.P. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 2002;30(2):227-232. http://doi.org/10.1038/ng828.
2. Babu S.G., Ponia S.S., Kumar D., Saxena S. Cellular oncomiR orthologue in EBV oncogenesis. Comput. Biol. Med. 2011;41(10):891-898. http://doi.org/10.1016/j.compbiomed.2011.07.007.
3. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. http://doi.org/10.1093/bioinformatics/btu170.
4. Bryzgalov L.O., Antontseva E.V., Matveeva M.Y., Shilov A.G., Kashina E.V., Mordvinov V.A., Merkulova T.I. Detection of regulatory SNPs in human genome using ChIP-seq ENCODE data. PloS ONE. 2013;8(10):e78833. http://doi.org/10.1371/journal.pone.0078833.
5. Castells A., Castellví-Bel S., Balaguer F. Concepts in familial colorectal cancer: where do we stand and what is the future? Gastroenterology. 2009;137(2):404-409. http://doi.org/10.1053/j.gastro.2009.06.015.
6. Chung C.C., Chanock S.J. Current status of genome-wide association studies in cancer. Hum. Genet. 2011;130(1):59-78. http://doi.org/10.1007/s00439-011-1030-9.
7. Cohen M.M. Molecular dimensions of gastrointestinal tumors: Some thoughts for digestion. Am. J. Med. Gen. 2003;122A(4):303-314. http://doi.org/10.1002/ajmg.a.20473.
8. De Voer R.M., Geurts van Kessel A., Weren R.D.A., Ligtenberg M.J.L., Smeets D., Fu L., … Kuiper R.P. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology. 2013;145(3):544-547. http://doi.org/10.1053/j.gastro.2013.06.001.
9. DeRycke M.S., Gunawardena S.R., Middha S., Asmann Y.W., Schaid D.J., McDonnell S.K., … Goode E.L. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 2013; 22(7):1239-1251. http://doi.org/10.1158/1055-9965.EPI-12- 1226.
10. Edwards S.L., Beesley J., French J.D., Dunning A.M. Beyond GWASs: Illuminating the dark road from association to function. Am. J. Hum. Genet. 2013;93(5):779-797. http://doi.org/10.1016/j.ajhg.2013.10.012.
11. Ernst J., Kheradpour P., Mikkelsen T.S., Shoresh N., Ward L.D., Epstein C.B., … Bernstein B.E. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43-49. http://doi.org/10.1038/nature09906.
12. Esteban-Jurado C. New genes emerging for colorectal cancer predisposition. World J. Gastroenterol. 2014;20(8):1961. http://doi.org/10.3748/wjg.v20.i8.1961.
13. Fearon E.R. Molecular genetics of colorectal cancer. Ann. Rev. Pathol.: Mech. 2011;6(1):479- 507. http://doi.org/10.1146/annurevpathol-011110-130235.
14. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., … Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136(5):E359-E386. http://doi.org/10.1002/ijc.29210.
15. Gylfe A.E., Katainen R., Kondelin J., Tanskanen T., Cajuso T., Hänninen U., … Aaltonen L.A. Eleven candidate susceptibility genes for common familial colorectal cancer. PLoS Gen. 2013;9(10):e1003876. http://doi.org/10.1371/journal.pgen.1003876.
16. Han J., Kim Y.-L., Lee K.-W., Her N.-G., Ha T.-K., Yoon S., … Chi S.- G. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.). Cell Death Differ. 2013;20(8):1055-1067. http://doi.org/10.1038/cdd.2013.33.
17. Jasperson K.W. Hereditary colorectal cancer: More common than you think. Curr. Prob. Cancer. 2014;38(6):249-261. http://doi.org/10.1016/j.currproblcancer.2014.10.005.
18. Jasperson K.W., Tuohy T.M., Neklason D.W., Burt R.W. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044-2058. http://doi.org/10.1053/j.gastro.2010.01.054.
19. Kanojia D., Morshed R.A., Zhang L., Miska J.M., Qiao J., Kim J.W., … Ahmed A.U. βIII-tubulin regulates breast cancer metastases to the brain. Mol. Cancer Ther. 2015;14(5):1152-1161. http://doi.org/10.1158/1535-7163.MCT-14-0950.
20. Kasowski M., Grubert F., Heffelfinger C., Hariharan M., Asabere A., Waszak S.M., … Snyder M. Variation in transcription factor binding among humans. Science. 2010;328(5975):232- 235. http://doi.org/10.1126/science.1183621.
21. Kaz A.M., Brentnall T.A. Genetic testing for colon cancer. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006;3(12):670-679. http://doi.org/10.1038/ncpgasthep0663.
22. Kohnz R.A., Mulvihill M.M., Chang J.W., Hsu K.-L., Sorrentino A., Cravatt B.F., … Nomura D.K. Activity-based protein profiling of oncogene- driven changes in metabolism reveals broad dysregulation of PAFAH1B2 and 1B3 in cancer. ACS Chem. Biol. 2015;10(7):1624-1630. http://doi.org/10.1021/acschembio.5b00053.
23. Laitinen V.H., Rantapero T., Fischer D., Vuorinen E.M., Tammela T.L.J., PRACTICAL Consortium, … Schleutker J. Fine-mapping the 2q37 and 17q11.2-q22 loci for novel genes and sequence variants associated with a genetic predisposition to prostate cancer. Int. J. Cancer. 2015;136(10):2316-2327. http://doi.org/10.1002/ijc.29276.
24. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9(4):357-359. http://doi.org/10.1038/nmeth.1923.
25. Lappalainen T. Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Res. 2015;25(10): 1427-1431. http://doi.org/10.1101/gr.190983.115.
26. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078-2079. http://doi.org/10.1093/bioinformatics/btp352.
27. Li Q., Yokoshi M., Okada H., Kawahara Y. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat. Commun. 2015;6:6183. http://doi.org/10.1038/ncomms7183.
28. Madan E., Gogna R., Kuppusamy P., Bhatt M., Mahdi A.A., Pati U. SCO2 induces p53- mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex. Mol. Cell. Biol. 2013;33(7):1285-1302. http://doi.org/10.1128/MCB.06798-11.
29. Manolio T.A., Collins F.S., Cox N.J., Goldstein D.B., Hindorff L.A., Hunter D.J., … Visscher P.M. Finding the missing heritability of complex diseases. Nature. 2009; 461(7265):747-753. http://doi.org/10.1038/nature08494.
30. Maurano M.T., Humbert R., Rynes E., Thurman R.E., Haugen E., Wang H., … Stamatoyannopoulos J.A. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190-1195. http://doi.org/10.1126/science. 1222794.
31. Ng S.B., Buckingham K.J., Lee C., Bigham A.W., Tabor H.K., Dent K.M., … Bamshad M.J. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010;42(1):30- 35. http://doi.org/10.1038/ng.499.
32. Ni Y., Weber Hall A., Battenhouse A., Iyer V.R. Simultaneous SNP identification and assessment of allele-specific bias from ChIP-seq data. BMC Gen. 2012;13(1):46. http://doi.org/10.1186/1471-2156-13-46.
33. Pan Z., Chen S., Pan X., Wang Z., Han H., Zheng W., … Shao R. Differential gene expression identified in Uigur women cervical squamous cell carcinoma by suppression subtractive hybridization. Neoplasma. 2010;57(2):123-128. http://www.ncbi.nlm.nih.gov/pubmed/20099975.
34. Reddy T.E., Gertz J., Pauli F., Kucera K.S., Varley K.E., Newberry K.M., … Myers R.M. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 2012;22(5):860-869. http://doi.org/10.1101/gr.131201.111.
35. Rozowsky J., Abyzov A., Wang J., Alves P., Raha D., Harmanci A., … Ger-stein M. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 2014;7(1):522-522. http://doi.org/10.1038/msb.2011.54.
36. Sahu A.D., Aniba R., Chang Y.-P.C., Hannenhalli S. Epigenomic model of cardiac enhancers with application to genome wide association studies. Pacific Symposium on Biocomputing. 2013;22(5):92-102. http://doi.org/23424115.
37. Solban N., Jia H.P., Richard S., Tremblay S., Devlin A.M., Peng J., … Tremblay J. HCaRG, a novel calcium-regulated gene coding for a nuclear protein, is potentially involved in the regulation of cell proliferation. J. Biol. Chem. 2000;275(41):32234-32243. http://doi.org/10.1074/jbc.M001352200.
38. Sun S., Lee D., Ho A.S.W., Pu J.K.S., Zhang X.Q., Lee N.P., … Leung G.K.K. Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways. Neuro-Oncology. 2013;15(5):562-577. http://doi.org/10.1093/neuonc/not005.
39. Tagliabue E., Fargnoli M.C., Gandini S., Maisonneuve P., Liu F., Kayser M., … M-SKIP study group. MC1R gene variants and nonmelanoma skin cancer: a pooled-analysis from the M- SKIP project. British J. Cancer. 2015;113(2):354-363. http://doi.org/10.1038/bjc. 2015.231.
40. Taylor D.P., Burt R.W., Williams M.S., Haug P.J., Cannon-Albright L.A. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology. 2010;138(3):877-885. http://doi.org/10.1053/j.gastro.2009.11.044.
41. The Cancer Genome Atlas Network. 2013. http://cancergenome.nih.gov. Trynka G., Westra H.-J., Slowikowski K., Hu X., Xu H., Stranger B.E., … Raychaudhuri S. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex-trait loci. Am. J. Hum. Genet. 2015;97(1):139-152. http://doi.org/10.1016/j.ajhg.2015.05.016.
42. Wang Y.-P., Huang L.-Y., Sun W.-M., Zhang Z.-Z., Fang J.-Z., Wei B.- F., … Han Z.-G. Insulin receptor tyrosine kinase substrate activates EGFR/ERK signalling pathway and promotes cell proliferation of hepatocellular carcinoma. Cancer Lett. 2013;337(1):96-106. http://doi.org/10.1016/j.canlet.2013.05.019.
43. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., … Parkinson H. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucl. Acids Res. 2014;42(D1): D1001-D1006. http://doi.org/10.1093/nar/gkt1229.
44. Weren R.D.A., Ligtenberg M.J.L., Kets C.M., de Voer R.M., Verwiel E.T.P., Spruijt L., … Hoogerbrugge N. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 2015;47(6):668- 671. http://doi.org/10.1038/ng.3287.
45. Wong J.C.Y., Gokgoz N., Alon N., Andrulis I.L., Buchwald M. Cloning and mutation analysis of ZFP276 as a candidate tumor suppressor in breast cancer. J. Hum. Genet. 2003;48(12):668- 671. http://doi.org/10.1007/s10038-003-0088-1.
46. Yang C.-Y., Lu R.-H., Lin C.-H., Jen C.-H., Tung C.-Y., Yang S.-H., …Lin C.-H. Single nucleotide polymorphisms associated with colorectal cancer susceptibility and loss of heterozygosity in a Taiwanese population. PloS ONE. 2014;9(6):e100060. http://doi.org/10.1371/journal.pone.0100060.
47. Yu J.-H., Zhong X.-Y., Zhang W.-G., Wang Z.-D., Dong Q., Tai S., … Cui Y.-F. CDK10 functions as a tumor suppressor gene and regulates survivability of biliary tract cancer cells. Oncol. Rep. 2012;27(4): 1266-1276. http://doi.org/10.3892/or.2011.1617.
48. Zhang Z., Jia Q., Zhou C., Xie W. Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Sci. Rep. 2015;5:12754. http://doi.org/10.1038/srep12754.
49. Zhao Y., Clark W.T., Mort M., Cooper D.N., Radivojac P., Mooney S.D. Prediction of functional regulatory SNPs in monogenic and complex disease. Hum. Mutat. 2011;32(10):1183-1190. http://doi.org/10.1002/humu.21559.