Структурно-функциональная дивергенция гомеологичных генов в аллополиплоидном геноме растений
https://doi.org/10.18699/VJ16.204
Аннотация
При гибридизации близких видов растений, имеющих сходные геномы, могут образовываться аллополиплоидные формы. Известно, что в ходе эволюции через аллополиплоидизацию прошли многие виды растений, что сыграло значительную роль в формировании огромного разнообразия растений, а также их высокого адаптивного потенциала. Сейчас, благодаря полногеномному секвенированию широкого спектра видов покрытосеменных растений и сравнительному анализу структуры геномов, восстановлена цепь событий, в результате которых появились геномы современных растительных таксонов. Эти исследования показали, что многие диплоидные виды, прежде чем стать таковыми, прошли не один цикл полиплоидизации и дальнейшей диплоидизации. Цель обзора – на основе известных данных определить долю генов растительного генома, подверженных изменениям в случае аллополиплоидизации, и проиллюстрировать разнообразие механизмов, лежащих в основе функциональной дивергенции гомеологичных копий генов, т. е. генов-ортологов в субгеномах аллополипоидного вида. Изменения отдельных копий могут быть связаны с эпигенетическими особенностями организации гена (статус метилирования промоторной области или наличие копий-специфичных малых интерферирующих РНК) или затрагивать первичную структуру гена в его кодирующей части или регуляторных районах. Исследования, проведенные на искусственно созданных аллополиплоидных формах растений, показали широкое распространение у них так называемого транскрипционного доминирования и изменение уровня транскрипции по сравнению с генами диплоидных родительских форм. Изучение транскрипции отдельных гомеологичных копий генов позволило оценить, насколько распространено полное подавление транскрипции отдельных гомеологов у вновь созданных синтетических (0.4–5.0 % генов) и естественных (около 30 % генов) аллополиплоидов. У пшеницы полное подавление вместе с частичными изменениями экспрессии затрагивает в сумме до 49 % генов.
Об авторах
А. Ю. ГлаголеваРоссия
Новосибирск, Россия
О. Ю. Шоева
Россия
Новосибирск, Россия
Е. К. Хлесткина
Россия
Новосибирск, Россия
Список литературы
1. Abrouk M., Murat F., Pont C., Messing J., Jackson S., Faraut T., Tannier E., Plomion C., Cooke R., Feuillet C., Salse J. Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci. 2010;15:479-487.
2. Al-Kaff N., Knight E., Bertin I., Foote T., Hart N., Griffiths S., Moore G. Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann. Bot. 2008;101:863-872.
3. Appleford N.E., Evans D.J., Lenton J.R., Gaskin P., Croker S.J., Devos K.M., Phillips A.L., Hedden P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta. 2006;223: 568-582.
4. Argout X., Salse J., Aury J.M., Guiltinan M.J., Droc G., Gouzy J., Allegre M., Chaparro C., Legavre T., Maximova S.N., Abrouk M., Murat F., Fouet O., Poulain J., Ruiz M., Roguet Y., Rodier-Goud M., Barbosa-Neto J.F., Sabot F., Kudrna D., Ammiraju J.S., Schuster S.C., Carlson J.E., Sallet E., Schiex T., Dievart A., Kramer M., Gelley L., Shi Z., Bérard A., Viot C., Boccara M., Risterucci A.M., Guignon V., Sabau X., Axtell M.J., Ma Z., Zhang Y., Brown S., Bourge M., Golser W., Song X., Clement D., Rivallan R., Tahi M., Akaza J.M., Pitollat B., Gramacho K., D’Hont A., Brunel D., Infante D., Kebe I., Costet P., Wing R., McCombie W.R., Guiderdoni E., Quetier F., Panaud O., Wincker P., Bocs S., Lanaud C. The genome of theobroma cacao. Nat. Gen. 2010;43(2):101-108. DOI 10.1038/ng.736.
5. Bottley A., Xia G.M., Koebner R.M. Homoeologous gene silencing in hexaploid wheat. Plant J. 2006;47:897-906.
6. Chen Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann. Rev. Plant Biol. 2007; 58:377-406.
7. Chen Z.J., Pikaard C.S. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl Acad. Sci. USA. 1997;94:3442-3447.
8. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol. Biol. 2000;43:387-399.
9. D’Hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., Da Silva C., Jabbari K., Cardi C., Poulain J., Souquet M., Labadie K., Jourda C., Lengellé J., Rodier-Goud M., Alberti A., Bernard M., Correa M., Ayyampalayam S., Mckain M.R., Leebens-Mack J., Burgess D., Freeling M., Mbéguié-A-Mbéguié D., Chabannes M., Wicker T., Panaud O., Barbosa J., Hribova E., Heslop-Harrison P., Habas R., Rivallan R., Francois P., Poiron C., Kilian A., Burthia D., Jenny C., Bakry F., Brown S., Guignon V., Kema G., Dita M., Waalwijk C., Joseph S., Dievart A., Jaillon O., Leclercq J., Argout X., Lyons E., Almeida A., Jeridi M., Dolezel J., Roux N., Risterucci A.M., Weissenbach J., Ruiz M., Glaszmann J.C., Quétier F., Yahiaoui N., Wincker P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488(7410):213-217. DOI 10.1038/nature11241.
10. Dohm J.C., Minoche A.E., Holtgräwe D., Capella-Gutiérrez S., Zakrzewski F., Tafer H., Rupp O., Sörensen T.R., Stracke R., Reinhardt R., Goesmann A., Kraft T., Schulz B., Stadler P.F., Schmidt T., Gabaldón T., Lehrach H., Weisshaar B., Himmelbauer H. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2013;505(7484):546- 549. DOI 10.1038/nature12817.
11. Ekimova N.V., Muratova E.N., Silkin P.P. The role of polyploidy in adaptation and settling of steppe shrubs in Central Asia. Russian Journal Genetics: Applied Research. 2012;2:105-109.
12. Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V.M., Hénaff E., Câmara F., Cozzuto L., Lowy E., Alioto T., Capella-Gutiérrez S., Blanca J., Cañizares J., Ziarsolo P., Gonzalez-Ibeas D., Rodríguez-Moreno L., Droege M., Du L., Alvarez- Tejado M., Lorente- Galdos B., Melé M., Yang L., Weng Y., Navarro A., Marques-Bonet T., Aranda M.A., Nuez F., Picó B., Gabaldón T., Roma G., Guigó R., Casacuberta J.M., Arús P., Puigdomènech P. The genome of melon (Cucumis melo L.). PNAS. 2012; 109(29):11872-11877. DOI 10.1073/pnas.1205415109.
13. Goff S.A., Ricke D., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison D., Martin C., Katagiri F., Lange B.M., Moughamer T., Xia Y., Budworth P., Zhong J., Miguel T., Paszkowski U., Zhang S., Colbert M., Sun W.L., Chen L., Cooper B., Park S., Wood T.C., Mao L., Quail P., Wing R., Dean R., Yu Y., Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T., Miller R.M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson R., Feldhaus J., Macalma T., Oliphant A., Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science (New York). 2002; 296(5565): 92-100.
14. Griffiths S., Sharp R., Foote T.N., Bertin I., Wanous M., Reader S., Colas I., Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439:749-752.
15. Guo S., Zhang J., Sun H., Salse J., Lucas W.J., Zhang H., Zheng Y., Mao L., Ren Y., Wang Z., Min J., Guo X., Murat F., Ham B.K., Zhang Z., Gao S., Huang M., Xu Y., Zhong S., Bombarely A., Mueller L.A., Zhao H., He H., Zhang Y., Zhang Z., Huang S., Tan T., Pang E., Lin K., Hu Q., Kuang H., Ni P., Wang B., Liu J., Kou Q., Hou W., Zou X., Jiang J., Gong G., Klee K., Schoof H., Huang Y., Hu X., Dong S., Liang D., Wang J., Wu K., Xia Y., Zhao X,. Zheng Z., Xing M., Liang X., Huang B., Lv T., Wang J., Yin Y., Yi H., Li R., Wu M., Levi A., Zhang X., Giovannoni J.J., Wang J., Li Y., Fei Z., Xu Y. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Gen. 2013;45:51-58. DOI 10.1038/ng.2470.
16. Ha M., Lu J., Tian L., Ramachandran V., Kasschau K.D., Chapman E.J., Carrington J.C., Chen X., Wang X.J., Chen Z.J. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl Acad. Sci. USA. 2009; 106(42):17835-17840. DOI 10.1073/pnas.0907003106.
17. Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y., Zhu H., Li J., Lin K., Jin W., Fei Z., Li G., Staub J., Kilian A., van der Vossen E.A., Wu Y., Guo J., He J., Jia Z., Ren Y., Tian G., Lu Y., Ruan J., Qian W., Wang M., Huang Q., Li B., Xuan Z., Cao J., Asan, Wu Z., Zhang J., Cai Q., Bai Y., Zhao B., Han Y., Li Y., Li X., Wang S., Shi Q., Liu S., Cho W.K., Kim J.Y., Xu Y., Heller-Uszynska K., Miao H., Cheng Z., Zhang S., Wu J., Yang Y., Kang H., Li M., Liang H., Ren X., Shi Z., Wen M., Jian M., Yang H., Zhang G., Yang Z., Chen R., Liu S., Li J., Ma L., Liu H., Zhou Y., Zhao J., Fang X., Li G., Fang L., Li Y., Liu D., Zheng H., Zhang Y., Qin N., Li Z., Yang G., Yang S., Bolund L., Kristiansen K., Zheng H., Li S., Zhang X., Yang H., Wang J., Sun R., Zhang B., Jiang S., Wang J., Du Y., Li S. The genome of the cucumber, Cucumis sativus L. Nature Gen. 2009;41(12):1275-1281. DOI 10.1038/ng.475.
18. Iorizzo M., Ellison S., Senalik D., Zeng P., Satapoomin P., Huang J., Bowman M., Iovene M., Sanseverino W., Cavagnaro P., Yildiz M., Macko-Podgórni A., Moranska E., Grzebelus E., Grzebelus D., Ashrafi H., Zheng Z., Cheng S., Spooner D., Van Deynze A., Simon P. A high- quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Gen. 2016;48(6):657-666. DOI 10.1038/ng.3565.
19. Jaillon O., Aury J.M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilva C., Horner D., Mica E., Jublot D., Poulain J., Bruyère C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vico V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S., Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delledonne M., Pezzotti M., Lecharny A., Scarpelli C., Artiguenave F., Pè M.E., Valle G., Morgante M., Caboche M., Adam-Blondon A.F., Weissenbach J., Quétier F., Wincker P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463-467.
20. Jiao Y., Paterson A.H. Polyploidy-associated genome modifications during land plant evolution. Philosophical Transactions of the Royal Society B: Biol. Sci. 2014;369(1648):20130355.
21. Kashkush K., Feldman M., Levy A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002; 160:1651-1659.
22. Khlestkina E.K., Röder M.S., Salina E.A. Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat. BMC Plant Biol. 2008;8:88.
23. Kikuchi R., Kawahigashi H., Handa H. The floral integrator WFT in wheat: expression profiles of three homoeologous genes. Proc. 11th Intern. Wheat Gen. Symp. Brisbane. 2008:271.
24. Kim S., Park M., Yeom S.I., Kim Y.M., Lee J.M., Lee H.A., Seo E., Choi J., Cheong K., Kim K.T., Jung K., Lee G.W., Oh S.K., Bae C., Kim S.B., Lee H.Y., Kim S.Y., Kim M.S., Kang B.C., Jo Y.D., Yang H.B., Jeong H.J., Kang W.H., Kwon J.K., Shin C., Lim J.Y., Park J.H., Huh J.H., Kim J.S., Kim B.D., Cohen O., Paran I., Suh M.C., Lee S.B., Kim Y.K., Shin Y., Noh S.J., Park J., Seo Y.S., Kwon S.Y., Kim H.A., Park J.M., Kim H.J., Choi S.B., Bosland P.W., Reeves G., Jo S.H., Lee B.W., Cho H.T., Choi H.S., Lee M.S., Yu Y., Do Choi Y., Park B.S., van Deynze A., Ashrafi H., Hill T., Kim W.T., Pai H.S., Ahn H.K., Yeam I., Giovannoni J.J., Rose J.K., Sørensen I., Lee S.J., Kim R.W., Choi I.Y., Choi B.S., Lim J.S., Lee Y.H., Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Gen. 2014;46(3):270- 278. DOI 10.1038/ng.2877.
25. Krattinger S.G., Lagudah E.S., Wicker T., Risk J.M., Ashton A.R., Selter L.L., Matsumoto T., Keller B. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J. 2011; 65:392-403.
26. Li F., Fan G., Wang K., Sun F., Yuan Y., Song G., Li Q., Ma Z., Lu C., Zou C., Chen W., Liang X., Shang H., Liu W., Shi C., Xiao G., Gou C., Ye W., Xu X., Zhang X., Wei H., Li Z., Zhang G., Wang J., Liu K., Kohel R.J., Percy R.G., Yu J.Z., Zhu Y.X., Wang J., Yu S. Genome sequence of the cultivated cotton gossypium arboreum. Nature Gen. 2014;46(6):567-572. DOI 10.1038/ng.2987
27. Loukoianov A., Yan L., Blechi A., Sanchez A., Dubcovsky J. Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 2005;138:2364-2373.
28. Ma X.F., Gustafson J.P. Allopolyploidization-accommodated genomic sequence changes in triticale. Ann. Bot. (Lond.). 2008;101:825-832.
29. Madlung A., Masuelli R.W., Watson B., Reynolds S.H., Davison J., Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 2002;129:733-746.
30. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science. 1994;264:421-424.
31. Mayer K.F., Waugh R., Brown J.W., Schulman A., Langridge P., Platzer M., Fincher G.B., Muehlbauer G.J., Sato K., Close T.J., Wise R.P., Stein N. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-716.
32. Morimoto R., Kosugi T., Nakamura C., Takumi S. Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol. Biol. 2005;57:907-924.
33. Nomura T., Ishihara A., Yanagita R.C., Endo T.R., Iwamura H. Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc. Natl Acad. Sci. USA. 2005;102: 16490-16495.
34. Ozkan H., Levy A.A., Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat Aegilops-Triticum group. Plant Cell. 2001;13:1735-1747.
35. Paterson A., Bowers J., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., Bharti A.K., Chapman J., Feltus F.A., Gowik U., Grigoriev I.V., Lyons E., Maher C.A., Martis M., Narechania A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L., Carpita N.C., Freeling M., Gingle A.R., Hash C.T., Keller B., Klein P., Kresovich S., McCann M.C., Ming R., Peterson D.G., Mehboob-ur-Rahman, Ware D., Westhoff P., Mayer K.F., Messing J., Rokhsar D.S. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551-556. DOI 10.1038/nature07723.
36. Pershina L.A. On the role of wide hybridization and polyploidy in plants’ evolution. Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2009;13:336- 344. (in Russian)
37. Pestsova E.G., Goncharov N.P., Salina E.A. Elimination of a tandem repeat of telomeric heterochromatin during the evolution of wheat. Theor. Appl. Genet. 1998;97:1380-1386.
38. Pont C., Murat F., Confolent C., Balzergue S., Salse J. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Gen. Biol. 2011;12:R119. DOI 10.1186/gb-2011-12-12-r119.
39. Preuss S.B., Costa-Nunes P., Tucker S., Pontes O., Lawrence R.J., Mosher R., Kasschau K.D., Carrington J.C., Baulcombe D.C., Viegas W., Pikaard C.S. Multi-megabase silencing in nucleolar dominance results from siRNA-directed de novo DNA methylation recognized by specific methylcytosine binding proteins. Mol. Cell. 2008;32(5):673-684. DOI 10.1016/j.molcel.2008.11.009.
40. Pumphrey M., Bai J., Laudencia-Chingcuanco D., Anderson O., Gill B.S. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics. 2009; 181:1147-1157.
41. Rapp R.A., Udall J.A., Wendel J.F. Genomic expression dominance in allopolyploids. BMC Biol. 2009;7:18.
42. Reeder R.H. Mechanisms of nucleolar dominance in animals and plants. J. Cell Biol. 1985;101:2013-2016.
43. Salina E.A., Numerova O.M., Ozkan H., Feldman M. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome. 2004;47:860-867.
44. Salse J., Abrouk M., Bolot S., Guilhot N., Courcelle E., Faraut T., Waugh R., Close T.J., Messing J., Feuillet C. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc. Natl Acad. Sci. USA. 2009;106(35):14908- 14913.
45. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., Xu D., Hellsten U., May G.D., Yu Y., Sakurai T., Umezawa T., Bhattacharyya M.K.,
46. Sandhu D., Valliyodan B., Lindquist E., Peto M., Grant D., Shu S., Goodstein D., Barry K., Futrell-Griggs M., Abernathy B., Du J., Tian Z., Zhu L., Gill N., Joshi T., Libault M., Sethuraman A., Zhang X.C., Shinozaki K., Nguyen H.T., Wing R.A., Cregan P., Specht J., Grimwood J., Rokhsar D., Stacey G., Shoemaker R.C., Jackson S.A. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(12):178-183. DOI 10.1038/nature08670.
47. Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., Minx P., Reily A.D., Courtney L., Kruchowski S.S., Tomlinson C., Strong C., Delehaunty K., Fronick C., Courtney B., Rock S.M., Belter E., Du F., Kim K., Abbott R.M., Cotton M., Levy A., Marchetto P., Ochoa K., Jackson S.M., Gillam B., Chen W., Yan L., Higginbotham J., Cardenas M., Waligorski J., Applebaum E., Phelps L., Falcone J., Kanchi K., Thane T., Scimone A., Thane N., Henke J., Wang T., Ruppert J., Shah N., Rotter K., Hodges J., Ingenthron E., Cordes M., Kohlberg S., Sgro J., Delgado B., Mead K., Chinwalla A., Leonard S., Crouse K., Collura K., Kudrna D., Currie J., He R., Angelova A., Rajasekar S., Mueller T., Lomeli R., Scara G., Ko A., Delaney K., Wissotski M., Lopez G., Campos D., Braidotti M., Ashley E., Golser W., Kim H., Lee S., Lin J., Dujmic Z., Kim W., Talag J., Zuccolo A., Fan C., Sebastian A., Kramer M., Spiegel L., Nascimento L., Zutavern T., Miller B., Ambroise C., Muller S., Spooner W., Narechania A., Ren L., Wei S., Kumari S., Faga B., Levy M.J., McMahan L., Van Buren P., Vaughn M.W., Ying K., Yeh C.T., Emrich S.J., Jia Y., Kalyanaraman A., Hsia A.P., Barbazuk W.B., Baucom R.S., Brutnell T.P., Carpita N.C., Chaparro C., Chia J.M., Deragon J.M., Estill J.C., Fu Y., Jeddeloh J.A., Han Y., Lee H., Li P., Lisch D.R., Liu S., Liu Z., Nagel D.H., McCann M.C., SanMiguel P., Myers A.M., Nettleton D., Nguyen J., Penning B.W., Ponnala L., Schneider K.L., Schwartz D.C., Sharma A., Soderlund C., Springer N.M., Sun Q., Wang H., Waterman M., Westerman R., Wolfgruber T.K., Yang L., Yu Y., Zhang L., Zhou S., Zhu Q., Bennetzen J.L., Dawe R.K., Jiang J., Jiang N., Presting G.G., Wessler S.R., Aluru S., Martienssen R.A., Clifton S.W., McCombie W.R., Wing R.A., Wilson R.K. The B73 maize genome: complexity, diversity, and dynamics. Science (N.Y.). 2009;326(5956):1112-1115.
48. Sears E.R. The aneuploids of common wheat. Missouri Agr. Expt. Sta. Res. Bull. 1954;572:1- 59.
49. Shcherban A.B. The reorganization of plant genomes during allopolyploidisation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(2):277-285. (in Russian)
50. Shcherban A.B., Khlestkina E.K., Efremova T.T., Salina E.A. The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica. 2013;141:133-141. DOI 10.1007/s10709-013-9712-y.
51. Shcherban A.B., Kochieva E.Z., Salina E.A. Diversification of the homoeologous Lr34 sequences in polyploid wheat species and their diploid progenitors. J. Mol. Evol. 2016;82(6):291-302. DOI 10.1007/s00239-016-9748-6.
52. Shitsukawa N., Tahira C., Kassai K., Hirabayashi C., Shimizu T., Takumi S., Mochida K., Kawaura K., Ogihara Y., Murai K. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell. 2007;19:1723-1737.
53. Shoeva O.Yu., Khlestkina E.K. Differently expressed ‘early’ flavonoid biosynthesis genes become to be co-regulated under salinity stress. Cereal. Res. Commun. 2015;43(4):537-543. DOI http://dx.doi.org/10.1556/0806.43.2015.025.
54. Shoeva O.Yu., Khlestkina E.K., Berges H., Salina E.A. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene. 2014;538:334-341.
55. Shulaev V., Sargent D.J., Crowhurst R.N., Mockler T.C., Folkerts O., Delcher A.L., Jaiswal P., Mockaitis K., Liston A., Mane S.P., Burns P., Davis T.M., Slovin J.P., Bassil N., Hellens R.P., Evans C., Harkins T., Kodira C., Desany B., Crasta O.R., Jensen R.V., Allan A.C., Michael T.P., Setubal J.C., Celton J.M., Rees D.J., Williams K.P., Holt S.H., Ruiz Rojas J.J., Chatterjee M., Liu B., Silva H., Meisel L., Adato A., Filichkin S.A., Troggio M., Viola R., Ashman T.L., Wang H., Dharmawardhana P., Elser J., Raja R., Priest H.D., Bryant D.W. Jr, Fox S.E., Givan S.A., Wilhelm L.J., Naithani S., Christoffels A., Salama D.Y., Carter J., Lopez Girona E., Zdepski A., Wang W., Kerstetter R.A., Schwab W., Korban S.S., Davik J., Monfort A., Denoyes-Rothan B., Arus P., Mittler R., Flinn B., Aharoni A., Bennetzen J.L., Salzberg S.L., Dickerman A.W., Velasco R., Borodovsky M., Veilleux R.E., Folta K.M. The genome of woodland strawberry (Fragaria vesca). Nature Gen. 2011;43(2):109-116. DOI 10.1038/ng.740.
56. Song K.M., Lu P., Tang K.L., Osborn T.C. Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc. Natl Acad. Sci. USA. 1995;92:7719-7723.
57. The international Peach Genome Initiative, Verde I., Abbott A.G., Scalabrin S., Jung S., Shu S., Marroni F., Zhebentyayeva T., Dettori M.T., Grimwood J., Cattonaro F., Zuccolo A., Rossini L., Jenkins J., Vendramin E., Meisel L.A., Decroocq V., Sosinski B., Prochnik S., Mitros T., Policriti A., Cipriani G., Dondini L., Ficklin S., Goodstein D.M., Xuan P., Del Fabbro C., Aramini V., Copetti D., Gonzalez S., Horner D.S., Falchi R., Lucas S., Mica E., Maldonado J., Lazzari B., Bielenberg D., Pirona R., Miculan M., Barakat A., Testolin R., Stella A., Tartarini S., Tonutti P., Arús P., Orellana A., Wells C., Main D., Vizzotto G., Silva H., Salamini F., Schmutz J., Morgante M., Rokhsar D.S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Gen. 2013;45(5):487-494. DOI 10.1038/ng.2586.
58. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400): 635-641. DOI 10.1038/nature11119.
59. Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar’an B., Millan T., Zhang X., Ramsay L.D., Iwata A., Wang Y., Nelson W., Farmer A.D., Gaur P.M., Soderlund C., Penmetsa R.V., Xu C., Bharti A.K., He W., Winter P., Zhao S., Hane J.K., Carrasquilla-Garcia N., Condie J.A., Upadhyaya H.D., Luo M.C., Thudi M., Gowda C.L., Singh N.P., Lichtenzveig J., Gali K.K., Rubio J., Nadarajan N., Dolezel J., Bansal K.C., Xu X., Edwards D., Zhang G., Kahl G., Gil J., Singh K.B., Datta S.K., Jackson S.A., Wang J., Cook D.R. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnol. 2013;31:240-246. DOI 10.1038/nbt.2491.
60. Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A., Kalyanaraman A., Fontana P., Bhatnagar S., Troggio M., Pruss D., Salvi S., Pindo M., Baldi P., Castelletti S., Cavaiuolo M., Coppola G., Costa F., Cova V., Dal Ri A., Goremykin V., Komjanc M., Longhi S., Magnago P., Malacarne G., Malnoy M., Micheletti D., Moretto M., Perazzolli M., Si-Ammour A., Vezzulli S. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Gen. 2010; 42(10):833-839. DOI 10.1038/ng.654.
61. Wang J., Tian L., Lee H.S., Wei N.E., Jiang H., Watson B., Madlung A., Osborn T.C., Doerge R.W., Comai L., Chen Z.J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006;172:507-517.
62. Wang X., Wang H., Wang J., Sun R., Wu J., Liu S., Bai Y., Mun J.H., Bancroft I., Cheng F., Huang S., Li X., Hua W., Wang J., Wang X., Freeling M., Pires J.C., Paterson A.H., Chalhoub B., Wang B., Hayward A., Sharpe A.G., Park B.S., Weisshaar B., Liu B., Li B., Liu B., Tong C., Song C., Duran C., Peng C., Geng C., Koh C., Lin C., Edwards D., Mu D., Shen D., Soumpourou E., Li F., Fraser F., Conant G., Lassalle G., King G.J., Bonnema G., Tang H., Wang H., Belcram H., Zhou H., Hirakawa H., Abe H., Guo H., Wang H., Jin H., Parkin I.A., Batley J., Kim J.S., Just J., Li J., u J., Deng J., Kim J.A., Li J., Yu J., Meng J., Wang J., Min J., Poulain J., Wang J., Hatakeyama K., Wu K., Wang L., Fang L., Trick M., Links M.G., Zhao M., Jin M., Ramchiary N., Drou N., Berkman P.J., Cai Q., Huang Q., Li R., Tabata S., Cheng S., Zhang S., Zhang S., Huang S., Sato S., Sun S., Kwon S.J., Choi S.R., Lee T.H., Fan W., Zhao X., Tan X., Xu X., Wang Y., Qiu Y., Yin Y., Li Y., Du Y., Liao Y., Lim Y., Narusaka Y., Wang Y., Wang Z., Li Z., Wang Z., Xiong Z., Zhang Z., Brassica rapa Genome Sequencing Project Consortium. The genome of the mesopolypoid crop species Brassica rapa. Nature Gen. 2011a; 43:1035-1039. DOI 10.1038/ng.919.
63. Wang X., Wang H., Wang J., Sun R., Wu J., Liu S., Bai Y., Mun J.H., Bancroft I., Cheng F., Huang S., Li X., Hua W., Wang J., Wang X., Freeling M., Pires J.C., Paterson A.H., Chalhoub B., Wang B., Hayward A., Sharpe A.G., Park B.S., Weisshaar B., Liu B., Li B., Liu B., Tong C., Song C., Duran C., Peng C., Geng C., Koh C., Lin C., Edwards D., Mu D., Shen D., Soumpourou E., Li F., Fraser F., Conant G., Lassalle G., King G.J., Bonnema G., Tang H., Wang H., Belcram H., Zhou H., Hirakawa H., Abe H., Guo H., Wang H., Jin H., Parkin I.A., Batley J., Kim J.S., Just J., Li J., Xu J., Deng J., Kim J.A., Li J., Yu J., Meng J., Wang J., Min J., Poulain J., Wang J., Hatakeyama K., Wu K., Wang L., Fang L., Trick M., Links M.G., Zhao M., Jin M., Ramchiary N., Drou N., Berkman P.J., Cai Q., Huang Q., Li R., Tabata S., Cheng S., Zhang S., Zhang S., Huang S., Sato S., Sun S., Kwon S.J., Choi S.R., Lee T.H., Fan W., Zhao X., Tan X., Xu X., Wang Y., Qiu Y., Yin Y., Li Y., Du Y., Liao Y., Lim Y., Narusaka Y., Wang Y., Wang Z., Li Z., Wang Z., Xiong Z., Zhang Z., Brassica rapa Genome Sequencing Project Consortium. The genome of the mesopolypoid crop species Brassica rapa. Nature Gen. 2011b;43:1035-1039. DOI 10.1038/ng.919.
64. Wolfe K.H. Yesterday’s polyploidization and the mistery of diploidization. Nat. Rev. Genet. 2001;2:233-241.
65. Wu J., Wang Z., Shi Z., Zhang S., Ming R., Zhu S., Khan M.A., Tao S., Korban S.S., Wang H., Chen N.J., Nishio T., Xu X., Cong L., Qi K., Huang X., Wang Y., Zhao X., Wu J., Deng C., Gou C., Zhou W., Yin H., Qin G., Sha Y., Tao Y., Chen H., Yang Y., Song Y., Zhan D., Wang J., Li L., Dai M., Gu C., Wang Y., Shi D., Wang X., Zhang H., Zeng L., Zheng D., Wang C., Chen M., Wang G., Xie L., Sovero V., Sha S., Huang W., Zhang S., Zhang M., Sun J., Xu L., Li Y., Liu X., Li Q., Shen J., Wang J., Paull R.E., Bennetzen J.L., Wang J., Zhang S. The genome of the pear (Pyrus bretschneideri Rehd.). Gen. Res. 2013;23:396-408. DOI 10.1101/gr.144311.112.
66. Xu Q., Chen L.L., Ruan X., Chen D., Zhu A., Chen C., Bertrand D., Jiao W.B., Hao B.H., Lyon M.P., Chen J., Gao S., Xing F., Lan H., Chang J.W., Ge X., Lei Y., Hu Q., Miao Y., Wang L., Xiao S., Biswas M.K., Zeng W., Guo F., Cao H., Yang X., Xu X.W., Cheng Y.J., Xu J., Liu J.H., Luo O.J., Tang Z., Guo W.W., Kuang H., Zhang H.Y., Roose M.L., Nagarajan N., Deng X.X., Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Gen. 2013; 45(1):59-66. DOI 10.1038/ng.2472.
67. Xu X., Xu S., Pan S., Cheng B., Zhang D., Mu P., Ni G., Zhang S., Yang R., Li J., Wang G., Orjeda F., Guzman M., Torres R., Lozano O., Ponce D., Martinez G.N., De La Cruz S.K., Chakrabarti V.U., Patil K.G., Skryabin B.B., Kuznetsov N.V., Ravin T.V., Kolganova A.V., Beletsky A.V., Mardanov A., Di Genova D.M., Bolser D.M.A., Martin G., Li Y. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475(7355):189-195. DOI 10.1038/nature10158.
68. Zhang D., Wang B., Zhao J., Zhao X., Zhang L., Liu D., Dong L., Wang D., Mao L., Li L. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. Crop J. 2015;3(1):1-9. DOI http://dx.doi.org/10.1016/j.cj.2014.08.005.
69. Zhang Q., Chen W., Sun L., Zhao F., Huang B., Yang W., Tao Y., Wang J., Yuan Z., Fan G., Xing Z., Han C., Pan H., Zhong X., Shi W., Liang X., Du D., Sun F., Xu Z., Hao R., Lv T., Lv Y., Zheng Z., Sun M., Luo L., Cai M., Gao Y., Wang J., Yin Y., Xu X., Cheng T., Wang J. The genome of Prunus mume. 2012;3:1318. DOI 10.1038/ncomms2290.