Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Analysis of the Neurogenesis: Prepattern gene network сontrolling the first stage in Drosophila melanogaster bristle pattern development

https://doi.org/10.18699/VJ16.199

Abstract

The external insect chitinous skeleton is unable to respond to stimuli; the external signals are received by specialized receptors. Drosophila perceives the tactile stimuli by its external sensory organs, the microchaetes and macrochaetes residing on the head and back (notum). The microchaetes (hairs) are numerous and arranged in perfect rows along the body. The macrochaetes (bristles) are rather few and are strictly positioned on the head and notum, being referred to as bristle pattern. Bristles act as mechanoreceptors, providing balance for flying drosophila. The proper bristle pattern of an adult fly develops through several stages. Its basic stage is formation of prepattern for the future bristles, represented by proneural clusters. The proneural clusters separate from the ectodermal cells in imaginal discs in the third instar larvae and early prepupae. They are induced by prepattern factors, identified with the transcription factors driving expression of their target genes in certain disc regions. Reconstruction of the gene network controlling prepattern development and its analysis are for the first time described as well as the principles underlying arrangement and function of this network. The hierarchical structure of the network, its key components, and regulatory circuits are identified. The network comprises 80 entities interconnected via 109 regulatory interactions. The key objects of the network, displaying the greatest connectivity with its other components, are the ASC proneural proteins encoded by the achaete and scute genes, and the proteins Decapentaplegic (Dpp) and Wingless (Wg). The structure of the network is hierarchical and has at least three control levels. The network acts as a gene ensemble owing to coordinated functioning of the regulatory circuits controlling activities of the corresponding genes both within and between the levels. The resulting effect of the network operation consists in activation of the AS-C, proneural genes, the expression of which distinguishes the cells of proneural cluster from the surrounding ectodermal cells.

About the Authors

D. P. Furman
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


T. A. Bukharina
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk, Russia


References

1. Affolter M., Basler K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat. Rev. Genet. 2007;8(9): 663-674.

2. Akiyama T., Gibson M.C. Decapentaplegic and growth control in the developing Drosophila wing. Nature. 2015;527(7578):375-8. DOI 10.1038/nature15730.

3. Aldaz S., Morata G., Azpiazu N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development. 2003;130:4473-4482.

4. Ayyar S., Negre B., Simpson P., Stollewerk A. An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambria. BMC Biol. 2010;24:127. DOI 10.1186/1741-7007-8-127.

5. Ayyar S., Pistillo D., Calleja M., Brookfield A., Gittins K., Goldstone C., Simpson P. NF-κB/Rel- mediated regulation of the neural fate in Drosophila. PLoS One. 2007;2:e1178.

6. Bronstein R., Levkovitz L., Yosef N., Yanku M., Ruppin E., Sharan R., Westphal H., Oliver B., Segal D. Transcriptional regulation by CHIP/LDB complexes. PLoS Genetics. 2010;6:e1001063. DOI 10.1371/journal.pgen.1001063.

7. Bukharina T.A., Furman D.P. Genetical control of mechanoreceptors formation in Drosophila melanogaster – the description in database “Neurogenesis”. Informatsionnyy vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2009;13(1):186-193 (in Russian).

8. Calleja M., Herranz H., Estella C., Casal J., Lawrence P., Simpson P., Morata G. Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development. 2000;127:3971-3980.

9. Calleja M., Renaud O., Usui K., Pistillo D., Morata G., Simpson P. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene. 2002;292(1-2):1-12.

10. Campbell G., Tomlinson A. Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell. 1999;96(4):553-562.

11. Cubadda Y., Heitzler P., Ray R.P., Bourouis M., Ramain P., Gelbart W., Simpson P., Haenlin M. u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. Genes Dev. 1997;11:3085-3095.

12. Cubas P., de Celis J.F., Campuzano S., Modolell J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 1991;5:996-1008.

13. de Celis J.F., Barrio R., Kafatos F.C. Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development. 1999;126:2653-2662.

14. de Navascués J., Modolell J. tailup, a LIM-HD gene, and Iro-C cooperate in Drosophila dorsal mesothorax specification. Development. 2007;134:1779-1788.

15. de Navascués J., Modolell J. The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila. Mech. Development. 2010;127:393-406. DOI 10.1016/j.mod.2010.05.001.

16. Fromental-Ramain C., Taquet N., Ramain P. Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila. Mech. Development. 2010;127:442-457. DOI 10.1016/j.mod.2010.08.002.

17. Fromental-Ramain C., Vanolst L., Delaporte C., Ramain P. pannier encodes two structurally related isoforms that are differentially expressed during Drosophila development and display distinct functions during thorax patterning. Mech. Development. 2008;125:43- 57.

18. Furman D.P., Bukharina T.A. Genetic сontrol of macrochaetae development in Drosophila melanogaster. Rus. J. Dev. Biol. 2008;39(4): 195-206.

19. Gómez-Skarmeta J.L., Campuzano S., Modolell J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat. Rev. Neurosci. 2003;4:587-598.

20. Gómez-Skarmeta J.L., Diez del Corral R., de la Calle-Mustienes E., Ferrés-Marcó D., Modolell J. araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell. 1996;85:95-105.

21. Gómez-Skarmeta J.L., Rodriguez I., Martinez C., Culi J., Ferrés-Marcó D., Beamonte D., Modolell J. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 1995;9:2598-2608.

22. Haenlin M., Cubadda Y., Blondeau F., Heitzler P., Lutz Y., Simpson P., Ramain P. Transcriptional activity of pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev. 1997;11:3096-3108.

23. Hainaut M., Sagnier T., Berenger H., Pradel J., Graba Y., Miotto B. The MYST-containing protein Chameau is required for proper sensory organ specification during Drosophila thorax morphogenesis. PLoS One. 2012;7(3):e32882. DOI 10.1371/journal.pone.0032882.

24. Hannon R., Evans T., Felsenfeld G., Gould H. Structure and promoter activity of the gene for the erythroid transcription factor GATA-1. Proc. Natl. Acad. Sci. USA. 1991;88:3004-3008.

25. Heitzler P., Vanolst L., Biryukova I., Ramain P. Enhancer-promoter communication mediated by Chip during Pannier-driven proneural patterning is regulated by Osa. Genes Dev. 2003;17:591-596.

26. Heslip T.R., Theisen H., Walker H., Marsh J.L. SHAGGY and DISHEVELLED exert opposite effects on wingless and decapentaplegic expression and on positional identity in imaginal discs. Development. 1997;124:1069-1078.

27. Ikmi A., Netter S., Coen D. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles. Dev. Biol. 2008;317:634-648.

28. Joshi M., Buchanan K.T., Shroff S., Orenic T.V. Delta and Hairy establish a periodic prepattern that positions sensory bristles in Drosophila legs. Dev. Biol. 2006;293:64-76.

29. Kolchanov N.A., Ananko E.A., Kolpakov F.A., Podkolodnaya O.A., Ignatieva E.V., Goryachkovskaya T.N., Stepanenko I.L. Gene Networks. Molekulyarnaya biologiya = Molecular Biology (Moscow). 2000;34(4):533-544 (in Russian).

30. Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75.

31. Lai E.C., Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev. Biol. 2004;269(1):1-17.

32. Layalle S., Volovitch M., Mugat B., Bonneaud N., Parmentier M.L., Prochiantz A., Joliot A., Maschat F. Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development. 2011;138: 2315-2323. DOI 10.1242/dev.057059.

33. Leyns L., Gómez-Skarmeta J.L., Dambly-Chaudière C. iroquois: a prepattern gene that controls the formation of bristles on the thorax of Drosophila. Mech. Development. 1996;59(1):63-72.

34. Martín F.A., Pérez-Garijo A., Moreno E., Morata G. The brinker gradient controls wing growth in Drosophila. Development. 2004; 131(20):4921-4930.

35. Matthews J.M., Visvader J.E. LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep. 2003;4:1132-1137.

36. Nakagawa T., Ikehara T., Doiguchi M., Imamura Y., Higashi M., Yoneda M., Ito T. Enhancer of Acetyltransferase Chameau (EAChm) is a novel transcriptional co-activator. PLoS One. 2015;10(11):e0142305. DOI 10.1371/journal.pone.0142305.

37. Penton A., Hoffmann F.M. Decapentaplegic restricts the domain of wingless during Drosophila limb patterning. Nature. 1996;382:162-165.

38. Ramain P., Heitzler P., Haenlin M., Simpson P. pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA- 1. Development. 1993;119:1277-1291.

39. Ramain P., Khechumian R., Khechumian K. Arbogast N., Ackermann C., Heitzler P. Interactions between Chip and the Achaete/Scute-Daughterless heterodimers are required for pannier-driven proneural patterning. Mol. Cell. 2000;6:781-790.

40. Reeves N., Posakony J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell. 2005;8:413-425.

41. Romani S., Campuzano S., Macagno E.R., Modolell J. Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev. 1989;3: 997-1007.

42. Ruiz-Gómez M., Modolell J. Deletion analysis of the achaete-scute locus of Drosophila melanogaster. Genes Dev. 1987;1:1238-1246.

43. Sato M., Kojima T., Michiue T., Saigo K. Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development. 1999;26(7):1457-1466.

44. Sato M., Saigo K. Involvement of pannier and u-shaped in regulation of Decapentaplegic- dependent wingless expression in developing Drosophila notum. Mech. Development. 2000;93(1-2):127-138.

45. Serebrovsky A.S., Dubinin N.P., The artificial production of mutations and the gene problem. Uspekhi eksperimentalnoy biologii = Adventures of Experimental Biology. 1929;4:235-247 (in Russian).

46. Serrano N., O’Farrell P.H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 1997;7(3):R186-195.

47. Shilo B.Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 2003;284:140-149.

48. Skeath J.B., Carroll S.B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 1991;5:984-995.

49. Stern C. Two or three bristles. Am. Sci. 1954;42:213-247.

50. Tsai S.F., Strauss E., Orkin S.H. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 1991;5:919-931.

51. Vanolst L., Fromental-Ramain C., Ramain P. Toutatis, a TIP5-related protein, positively regulates Pannier function during Drosophila neural development. Development. 2005;132:4327-4338.

52. Yang M., Hatton-Ellis E., Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development. 2012;139:325-334. DOI 10.1242/dev.074260.

53. Zecca M., Basler K., Struhl G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development. 1995;121:2265-2278.


Review

Views: 595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)