Computational model for mammalian circadian oscillator: interacting with NAD+/SIRT1 pathway and age-related changes in gene expression of circadian oscillator
https://doi.org/10.18699/VJ16.201
Abstract
Studies of the last decade reveal a new sight on the possible link between aging processes and circadian rhythm. New data on the role of the NAD+-dependent histone deacetylase SIRT1 in the integration of regulation pathways for circadian rhythms and metabolism as well as data on a new function of the NAD+ as the ”metabolic oscillator” open a promising direction in this area. In the paper we suggested a modification and extension of the most detailed model for the circadian oscillator developed by Kim and Forger (2012). We included the additional feedback of the oscillator which concerns genes/proteins NAMPT, SIRT1, and also NAM, NAD+. The regulation of transcription for gene NAMPT by transcription factor CLOCK/BMAL1 determine the appropriate rhythm of mRNA and protein NAMPT expression. Since an enzyme product of this gene is a key in the pathway of biosynthesis and recycling of NAD+, therefore the circadian rhythm is also characteristic for the fluctuations in the level of this coenzyme and in the activity of NAD+-dependent histone deacetylase SIRT1. The deacetylation of circadian oscillator components by this enzyme closes the feedback mediated through this pathway. In particular, the effects of SIRT1 in circadian oscillator are the gain of degradation of protein Per2, increasing of the gene Bmal1 transcription, deacetylation of chromatin in regulatory regions of circadian oscillator genes in the E-boxes area with subsequent suppression of transcription. We took into account all of these processes in our extended model of the circadian oscillator. Based on the experimental data on the aging changes in the activity of SIRT1 and the level of NAD+, we attempted to study the effect of these age-related changes on the functioning of the circadian oscillator. Simulation data showed a decrease in expression level of several genes of the circadian oscillator, in particular, Bmal1 and Per2, in the older age groups. In addition, our extended model predicted an increase in the period of oscillations. The results indicate that decrease in SIRT1 activity deal with agerelated NAD+ metabolic disorder may be one of the reasons for the circadian oscillator dysfunctions in the suprachiasmatic nuclei. Such disorders may result in a breaking of the circadian rhythms in the body as a whole.
About the Authors
N. L. PodkolodnyyRussian Federation
Novosibirsk, Russia
N. N. Tverdokhleb
Russian Federation
Novosibirsk, Russia
O. A. Podkolodnaya
Russian Federation
Novosibirsk, Russia
References
1. Akashi M., Takumi T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 2005;12:441-448.
2. Aksoy P., Escande C., White T.A., Thompson M., Soares S., Benech J.C., Chini E.N. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem. Biophys. Res. Commun. 2006;349(1):353-359. Epub 2006 Aug 22.
3. Albrecht U., Eichele G. The mammalian circadian clock. Curr. Opinion Genetics Development. 2003;13(3):271-277.
4. Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317-328. DOI 10.1016/j.cell.2008.06.050.
5. Asher G., Reinke H., Altmeyer M., Gutierrez-Arcelus M., Hottiger M.O., Schibler U. Poly(ADP- ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 2010; 142(6):943-953. DOI 10.1016/j.cell.2010.08.016. Epub 2010 Sep 9.
6. Baburski A.Z., Sokanovic S.J., Bjelic M.M., Radovic S.M., Andric S.A., Kostic T.S. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging. Exp. Gerontol. 2016;73: 5-13. DOI 10.1016/j.exger.2015.11.002. Epub 2015 Nov 4.
7. Bai P., Cantó C., Oudart H., Brunyánszki A., Cen Y., Thomas C., Yamamoto H., Huber A., Kiss B., Houtkooper R.H., Schoonjans K., Schreiber V., Sauve A.A., Menissier-de Murcia J., Auwerx J. PARP- 1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabolism. 2011;13(4):461-468. DOI 10.1016/j.cmet. 2011.03.004.
8. Banks G., Nolan P.M., Peirson S.N. Reciprocal interactions between circadian clocks and aging. Mamm. Genome. 2016;27(7-8):332-340. DOI 10.1007/s00335-016-9639-6.
9. Barbosa M.T., Soares S.M., Novak C.M., Sinclair D., Levine J.A., Aksoy P., Chini E.N. The enzyme CD38 (a NAD glycohydrolase,EC 3.2.2.5) is necessary for the development of diet- induced obesity. FASEB J. 2007;21(13):3629-3639. Epub 2007 Jun 21.
10. Berger N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985;101(1):4-15.
11. Bonaconsa M., Malpeli G., Montaruli A., Carandente F., Grassi-Zucconi G., Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp. Gerontol. 2014;55:70-79. DOI 10.1016/j.exger.2014.03.011. Epub 2014 Mar 24.
12. Bouras T., Fu M., Sauve A.A., Wang F., Quong A.A., Perkins N.D., Hay R.T., Gu W., Pestell R.G. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 2005;280(11):10264-10276. Epub 2005 Jan 4.
13. Braidy N., Guillemin G.J., Mansour H., Chan-Ling T., Poljak A., Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6(4):e19194. DOI 10.1371/journal.pone.0019194.
14. Chang H.C., Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013; 153(7):1448-1460. DOI 10.1016/j.cell.2013.05.027.
15. Cho S.H., Chen J.A., Sayed F., Ward M.E., Gao F., Nguyen T.A., Krabbe G., Sohn P.D., Lo I., Minami S., Devidze N., Zhou Y., Coppola G., Gan L. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 2015;35(2):807-818. DOI 10.1523/JNEUROSCI. 2939-14.2015.
16. Defour A., Dessalle K., Castro Perez A., Poyot T., Castells J., Gallot Y.S., Durand C., Euthine V., Gu Y., Béchet D., Peinnequin A., Lefai E., Freyssenet D. Sirtuin 1 regulates SREBP-1c expression in a LXR-dependent manner in skeletal muscle. PLoS One. 2012;7(9): e43490. DOI 10.1371/journal.pone.0043490. Epub 2012 Sep 11.
17. Duncan M.J., Prochot J.R., Cook D.H., Smith J.T., Franklin K.M. Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res. 2013;1491:44-53. DOI 10.1016/j.brainres.2012.11.008. Epub 2012 Nov 15.
18. Gurd B.J. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 2011;36(5):589-597. DOI 10.1139/h11-070. Epub 2011 Sep 2.
19. Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annual Rev. Pathol. 2010;5:253-295.
20. Herranz D., Muñoz-Martin M., Cañamero M., Mulero F., Martinez-Pastor B., Fernandez- Capetillo O., Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010;1:3. DOI 10.1038/ncomms1001.
21. Houtkooper R.H., Cantó C., Wanders R.J., Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 2010;31(2):194-223. DOI 10.1210/er.2009-0026. Epub 2009 Dec 9.
22. Imai S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim. Biophys. Acta. 2010;1804(8):1584-90. DOI 10.1016/j.bbapap.2009.10.024. Epub 2009 Nov 6.
23. Imai S., Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464- 471. DOI 10.1016/j.tcb.2014.04.002. Epub 2014 Apr 29.
24. Imai S.I., Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. Aging Mechanisms Disease. 2016;2:16017. DOI 10.1038/npjamd.2016.17; Epub 2016 Aug 18.
25. Kim H.N., Han L., Iyer S., de Cabo R., Zhao H., O’Brien C.A., Manolagas S.C., Almeida M. Sirtuin1 suppresses osteoclastogenesis by deacetylating FoxOs. Mol. Endocrinol. 2015;29(10):1498-1509.
26. Kim J.K., Forger D.B. A mechanism for robust circadian timekeeping via stoichiometric balance. Mol. Syst. Biol. 2012;8:630. DOI 10.1038/msb.2012.62.
27. Ko C.H., Takahashi J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006;15;15(Spec.2):R271-7.
28. Kolker D.E., Fukuyama H., Huang D.S., Takahashi J.S., Horton T.H., Turek F.W. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J. Biol. Rhythms. 2003;18(2):159-169.
29. Lim J.H., Lee Y.M., Chun Y.S., Chen J., Kim J.E., Park J.W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxiainducible factor 1α. Mol. Cell. 2010;38(6):864- 878. DOI 10.1016/j.molcel.2010.05.023.
30. Liu C., Li S., Liu T., Borjigin J., Lin J.D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature. 2007;447:477-481. PubMed: 17476214.
31. Luna A., McFadden G.B., Aladjem M.I., Kohn K.W. Predicted role of NAD utilization in the control of circadian rhythms during DNA damage response. PLoS Comput. Biol. 2015;11(5):e1004144. DOI 10.1371/journal.pcbi.1004144.eCollection 2015.
32. Martínez-Redondo P., Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer. 2013;4(3-4):148-163. DOI 10.1177/1947601913483767.
33. Masri S. Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Curr. Opinion Clin. Nutrition Metabolic Care. 2015;18(6):521-527. DOI 10.1097/MCO.0000000000000219.
34. Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7(7):e42357. DOI 10.1371/journal.pone.0042357. Epub 2012 Jul 27.
35. Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L.P., Sassone- Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340. DOI 10.1016/j.cell. 2008.07.002.
36. Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654-657.
37. Nakamura T.J., Nakamura W., Tokuda I.T., Ishikawa T., Kudo T., Colwell C.S., Block G.D. Age- related changes in the circadian system unmasked by constant conditions. eNeuro. 2015;2(4). pii: ENEURO. 0064-15.2015. DOI 10.1523/ENEURO.0064-15.2015.
38. Nemoto S., Fergusson M.M., Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 2005;280(16):16456-16460. Epub 2005 Feb 16.
39. Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015;50(4):284-297. DOI 10.3109/10409238.2015.1028612. Epub 2015 Apr 2.
40. Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta. 2015;1852(11):2442-2455. DOI 10.1016/j.bbadis.2015. 08.017.
41. Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y., Marcheva B., Hong H.K., Chong J.L., Buhr E.D., Lee C., Takaha-shi J.S., Imai S., Bass J. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927): 651-654. DOI 10.1126/science.1171641. Epub 2009 Mar 19.
42. Reppert S.M., Weaver D.R. Coordination of circadian timing in mammals. Nature. 2002;29;418(6901):935-941.
43. Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 2004;279(49):50754-50763. Epub 2004 Sep 20.
44. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434:113-118.
45. Sahar S., Nin V., Barbosa M.T., Chini E.N., Sassone-Corsi P. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany NY). 2011;3(8):794-802.
46. Shearman L.P., Sriram S., Weaver D.R., Maywood E.S., Chaves I., Zheng B., Kume K., Lee C.C., van der Horst G.T., Hastings M.H., Reppert S.M. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288(5468):1013-1019.
47. Stein L.R., Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 2014;33(12):1321-1340. DOI 10.1002/embj.201386917. Epub 2014 May 8.
48. Tanno M., Sakamoto J., Miura T., Shimamoto K., Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 2007;282(9):6823-6832. Epub 2006 Dec 30.
49. Vaziri H., Dessain S.K., Eaton Ng.E., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A. hSIR2(SIRT1) functions as an NADdependent p53 deacetylase. Cell. 2001;107:149-159.
50. Wang R.H., Zhao T., Cui K., Hu G., Chen Q., Chen W., Wang Х.-W., Soto-Gutierrez A., Zhao K., Deng C.-X. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci. Rep. 2016;6:28633.
51. Wyse C.A., Coogan A.N. Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res. 2010;1337: 21-31. DOI 10.1016/j.brainres.2010.03.113. Epub 2010 Apr 9.
52. Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23(12):2369-2380.
53. Yoshino J., Mills K.F., Yoon M.J., Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of dietand age-induced diabetes in mice. Cell Metab. 2011;14:528-536.