Structural modeling of NAD+ binding modes to PARP-1
https://doi.org/10.18699/VJ16.202
Abstract
The nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in the signaling and repair of DNA. PARP-1 catalyses covalent binding of poly (ADP-ribose) polymers with itself as well as with other acceptor proteins using NAD+ as a donor of ADP-ribose. Inhibitors of poly (ADP-ribose) polymerase have been shown to be effective in improvement of radiation therapy and chemotherapy of cancer in clinical testing. Development of new poly (ADP-ribose) polymerase-1 inhibitors based on derivatives of natural compounds such as NAD+ represents a novel and promising strategy. The structure of complex of human poly (ADP-ribose) polymerase-1 with NAD+ can be a starting point for rational design of small molecule inhibitors based on NAD+ derivatives. Indeed there is no crystal structure of complex poly (ADP-ribose) polymerase-1 with nicotinamide adenine dinucleotide (NAD+) available yet. In this work using molecular modeling approaches we have predicted NAD+ binding modes with PARP-1 at the donor binding site of the catalytic domain. Using structures of PARP-1 homologs in complex with NAD+ we predicted pharmacophore restraints of NAD+ binding to PARP-1. Based on clustering of PARP-1 conformations in complex with co-crystallized inhibitors and predicted pharmacophore restraints, we proposed several possible models of NAD+ binding to PARP-1 at the donor binding site of the catalytic domain. According to the predicted models, two conformations of pyrophosphate group of NAD+ in complex with PARP-1 at the donor binding site are possible. Validation of the proposed models of NAD+ binding with PARP-1 can be achieved by quantitative structure-activity analysis of NAD+ derivatives. We designed two NAD+ derivatives, which can be used for validation of predicted NAD+ binding models.
About the Authors
N. V. IvanisenkoRussian Federation
Novosibirsk, Russia
D. A. Zhechev
Russian Federation
Novosibirsk, Russia
V. A. Ivanisenko
Russian Federation
Novosibirsk, Russia
References
1. Barkauskaite E., Jankevicius G., Ahel I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell. 2015;58(6):935-946. DOI 10.1016/j.molcel.2015.05.007.
2. Basu B., Sandhu S.K., de Bono J.S. PARP Inhibitors. Drugs. 2012; 72(12):1579-1590.
3. Domagala P., Huzarski T., Lubinski J., Gugala K., Domagala W. PARP- 1 expression in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible implications for PARP-1 inhibitor therapy. Breast Cancer Res. Treatment. 2011;127(3):861-869. DOI 10.1007/s10549-011-1441-2.
4. Ferraris D. Evolution of poly (ADP-ribose) polymerase-1 (PARP- 1) inhibitors. From concept to clinic. J. Med. Chemistry. 2010;53(12): 4561-4584. DOI 10.1021/jm100012m.
5. Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., Kaus J.W., Cerutti D.S., Krilov G., JorgensenW.L., Abel R., Friesner R.A. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Computation. 2015;12(1):281-296. DOI 10.1021/acs.jctc.5b00864.
6. Hay T., Jenkins H., Sansom O.J., Martin N.M.B., Smith G.C.M., Clarke A.R. Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy. Cancer Res. 2005;65:10145-10148. DOI 10.1158/0008-5472.
7. Jacobson M.P., Friesner R.A., Xiang Z., Honig B. On the role of crystal packing forces in determining protein side-chain conformations. J. Mol. Biol. 2002;320:597-608. DOI 10.1016/S0022-2836(02)00470-9.
8. Jacobson M.P., Pincus D.L., Rapp C.S., Day T.J.F., Honig B. Shaw D.E., Friesner R.A. A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function Bioinformatics. 2004;55:351-367. DOI 10.1002/prot.10613.
9. Jørgensen R., Wang Y., Visschedyk D., Merrill A.R. The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Reports. 2008;9(8):802-809. DOI 10.1038/embor.2008.90.
10. Kinoshita T., Nakanishi I., Warizaya M., Iwashita A., Kido Y., Hattori K., Fujia T. Inhibitor- induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett. 2004;556(1-3): 43-46. DOI 10.1016/S0014-5793(03)01362-0.
11. Lee Y.M., Babu C.S., Chen Y.C., Milcic M., Qu Y., Lim C. Conserved structural motif for recognizing nicotinamide adenine dinucleotide in poly(ADP-ribose) polymerases and ADP- ribosylating toxins: implications for structure-based drug design. J. Med. Chemistry. 2010;53(10):4038-4049. DOI 10.1021/jm1001106.
12. Lin H. Nicotinamide adenine dinucleotide: beyond a redox coen-zyme. Org. Biomol. Chemistry. 2007;5(16):2541-2554. DOI 10.1039/B706887E.
13. Luo X., Kraus W.L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Gen. Development. 2012; 26(5):417-432. DOI 10.1101/gad.183509.111.
14. Martin D.S., Bertino J.R., Koutcher J.A. ATP depletion + pyrimidine depletion can markedly enhance cancer therapy: fresh insight for a new approach. Cancer Res. 2000;60(24):6776-6783.
15. Peralta-Leal A., Rodriguez M.I., Oliver F.J. Poly(ADP-ribose) polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Clin. Transl. Oncol. 2008;10(6):318-323.
16. Ruf A., de Murcia J.M., de Murcia G., Schulz G.E. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. 1996;93(15):7481-7485.
17. Sherstyuk Y.V., Zakharenko A.L., Kutuzov M.M., Chalova P.V., Sukhanova M.V., Lavrik O.I., Silnikov V.N., Abramova T.V. A versatile strategy for the design and synthesis of novel ADP conjugates and their evaluation as potential poly(ADP-ribose) polymerase 1 inhibitors. Mol. Diversity. 2016;1-13. DOI 10.1007/s11030-016-9703-x.
18. Zhu Q., Wang X., Chu Z., He G., Dong G., Xu Y. Design, synthesis and biological evaluation of novel imidazo[4, 5-c]pyridinecarboxamide derivatives as PARP-1 inhibitors. Bioorg. Med. Chem. Letters. 2013;23(7):1993-1996. DOI 10.1016/j.bmcl.2013.02.032.