The impact of terahertz radiation on an extremophilic archaean Halorubrum saccharovorum proteome
https://doi.org/10.18699/VJ16.205
Abstract
Nonthermal effects of terahertz radiation on living objects are currently intensely studied, as more sources of this radiation type and devices employing it are being constructed. Terahertz radiation is increasingly used in security and inspection systems, medical and scientific appliances due to its low quant energy, which does not cause severe effects on organisms as other radiation types with higher quant energies do. The aim of this study was the identification of protein complexes participating in the response of the archaea Halorubrum saccharovorum H3 isolated from an extreme natural environment to terahertz radiation. We developed a microfluidic system for irradiation of bacterial and archaeal cultures with terahertz radiation and performed a 5-hour-long exposure of H. saccharovorum to terahertz radiation at a wavelength of 130 μm and a power density of 0.8 Wt per cm2 for 5 h. We identified under- or overexpressed proteins in response to terahertz radiation using 2D electrophoresis with subsequent MALDI-TOF mass spectrometry. A total of 16 differentially expressed protein fractions with at least 1.5-fold changes in expression level were detected. The obtained data suggest that Halorubrum cells respond to exposure to terahertz radiation by expression changes in gene products involved in translation regulation.
About the Authors
T. N. GoryachkovskayaRussian Federation
Novosibirsk, Russia
S. H. Konstantinova
Russian Federation
Novosibirsk, Russia
I. A. Meshcheriakova
Russian Federation
Novosibirsk, Russia
S. V. Bannikova
Russian Federation
Novosibirsk, Russia
E. A. Demidov
Russian Federation
Novosibirsk, Russia
A. V. Bryanskaya
Russian Federation
Novosibirsk, Russia
M. A. Scheglov
Russian Federation
Novosibirsk, Russia
A. I. Semenov
Russian Federation
Novosibirsk, Russia
D. Yu. Oshchepkov
Russian Federation
Novosibirsk, Russia
V. M. Popik
Russian Federation
Novosibirsk, Russia
S. E. Peltek
Russian Federation
Novosibirsk, Russia
References
1. Abu-Qarn M., Eichler J., Sharon N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 2008;18:544-550.
2. Betskiy O.V. On the mechanisms of the interaction between low-intensity millimeter waves and biologic objects. Izvestiya vysshikh uchebnykh zavedeniy. Radiofizika = News of Institutes of Higher Education. Radiophysics. 1994;37:30-41. (in Russian)
3. Betskiy O.V., Lebedeva N.N. Present-day notions of the action of lowintensity millimeter waves on biologic objects. Millimetrovye volny v biologii i meditsine = Millimeter waves in biology and medicine. 2001;24:5-19. (in Russian)
4. Bogomazova A.N., Vassina E.M., Goryachkovskaya T.N., Popik V.M., Sokolov A.S., Kolchanov N.A., Lagarkova M.A., Kiselev S.L., Peltek S.E. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci. Rep. 2015;5:7749.
5. Cho C.-W., Lee S.-H., Choi J., Park S.-J., Ha D.-J., Kim H.-J., Kim C.- W. Improvement of the two-dimensional gel electrophoresis analysis for the proteome study of Halobacterium salinarum. Proteomics. 2003;3:2325-2329.
6. Demidova E.V., Goryachkovskaya T.N., Malup T.K., Bannikova S.V., Semenov A.I., Vinokurov N.A., Kolchanov N.A., Popik V.M., Peltek S.E. Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells. Bioelectromagnetics. 2013;34: 15-21.
7. Demidova E.V., Goryachkovskaya T.N., Mescheryakova I.A. Malup T.K., Semenov A.I., Vinokurov N.A., Kolchanov N.A., Popik V.M., Peltek S.E. Impact of terahertz radiation on stress-sensitive genes of E. coli cell. IEEE Transact. Terahertz Sci. Technol. 2016;6(3):435- 441.
8. Fröhlich H. What are non-thermal electric biological effects? Bioelectromagnetics. 1982;3(1):45-46.
9. Gapeev A.B., Chemeris N.K. The model-based approach to the analysis of the action of modulated electromagnetic radiation on animal cells. Biofizika = Biophysics. 2000;45:299-312. (in Russian)
10. Mi H., Poudel S., Muruganujan A., Casagrande J.T., Thomas P.D. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucl. Acids Res. 2016;44:D336- D342. DOI 10.1093/nar/gkv1194.
11. Kandiba L., Aitio O., Helin J., Guan Z., Permi P., Bamford D.H., Eichler J., Roine E. Diversity in prokaryotic glycosylation: an archaeal- derived N-linked glycan contains legionaminic acid. Mol. Microbiol. 2013;84:578-593.
12. Kulipanov G.N., Bagryanskaya E.G., Chesnokov E.N., Choporova Yu. Yu., Gerasimov V.V., Getmanov Ya.V., Kiselev S.L., Knyazev B.A., Kubarev V.V., Peltek S.E., Popik V.M., Salikova T.V., Scheglov M.A., Seredniakov S.S., Shevchenko O.A., Skrinsky A.N., Veber S.L., Vinokurov N.A. Novosibirsk Free Electron Laser – facility description and recent experiments. IEEE Transact. Terahertz Sci. Technol.2015;5:798-809.
13. Kulipanov G.N., Gavrilov N.G., Knyazev B.A., Kolobanov E.I., Kotenkov V.V., Kubarev V.V., Matveenko A.N., Medvedev L.E., Miginsky S.V., Mironenko L.A., Ovchar V.K., Popik V.M., Salikova T.V., Scheglov M.A., Serednyakov S.S., Shevchenko O.A., Skrinsky A.N., Tcheskidov V.G., Vinokurov N.A. Research highlights from the Novosibirsk 400 W average power THz FEL. Terahertz Sci. Technol. 2008;1(2):107-125.
14. Kuryshev G.L., Kovchantsev A.P., Vainer B.G. Medical thermal imager based on matrix photodetector 128 × 128 operating in the spectral range 2.8–3.05 μm. Avtometriya. 1998;4:5-12. (in Russian)
15. Leonova G.A., Bogush A.A., Bobrov V.A., Bychinskiy V.A., Trofimova L.B., Malikov Yu.I. Ecogeochemical assessment of salt lakes of Altai Kray. Geografiya i prirodnye resursy = Geography and Natural Resources. 2007;1:51-59. (in Russian)
16. Rozanov A.S., Bryanskaya A.V., Malup T.K., Kotenko A.V., Peltek S.E. Draft genome sequence of a Halorubrum H3 strain isolated from the Burlinskoye salt lake (Altai Krai, Russia). Genome Announc. 2015;3(3):e00566-15.
17. Schäffer C., Messner P. Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology. 2004;14:31R- 42R.
18. Sergeeva S., Demidova E., Sinitsyna O., Goryachkovskaya T., Bryanskaya A., Semenov A., Meshcheryakova I., Dianov G., Popik V., Peltek S. 2.3 THz radiation: Absence of genotoxicity/mutagenicity in Escherichia coli and Salmonella typhimurium. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016;803-804:34-38.
19. Weightman P. Prospects for the study of biological systems with high power sources of terahertz radiation. Phys. Biol. 2012;9:053001.
20. Wilmink G.J., Grundt J.E. Invited review article: Current state of research on biological effects of terahertz radiation. J. Infrared Milli. Terahz. Waves. 2011;32:1074-1122.