Методы маркирования клеток для изучения судьбы клеточных поколений
https://doi.org/10.18699/VJ16.211
Аннотация
В процессе развития многоклеточного организма из одной тотипотентной зиготы образуется огромное количество клеток (триллионы для человека) с разной специализацией. Во взрослом состоянии многие ткани постоянно самообновляются: старые клетки погибают, а из популяции стволовых клеток образуются новые. Изучение судьбы отдельных клеток, их происхождения и родственных связей дает ответы на многие вопросы, связанные как с нормальным развитием, так и с патогенезом. Прямые наблюдения за развивающимися эмбрионами позволили установить судьбу бластомеров асцидии Styela partita, а также происхождение всех клеток червя Caenorhabditis elegans. Исследователям повезло с объектом: в первом случае происходит естественное «маркирование » бластомеров, во втором, поскольку тело червя прозрачно, можно следить за каждой клеткой нематоды. В большинстве же случаев определение клеточных линий и идентификация субпопуляций стволовых клеток представляют большую трудность для исследователей. Поэтому для отслеживания судьбы отдельных клеток стали разрабатываться методы маркирования, основанные на внесении в клетки специфических меток, которые наследуются в ходе делений. Поскольку все потомки исходной клетки несут одинаковые метки, их можно легко отличить от потомков других клеток. В обзоре обсуждаются методы маркирования клеток с помощью красителей и генетических конструкций, обеспечивающих синтез белков-репортеров, по наличию которых можно установить родство клеток. Особое внимание уделено методам, основанным на внесении наследуемой метки в геном клеток (генетическое маркирование), в том числе вирусному маркированию и клеточному баркодированию. Один из разделов обзора посвящен маркированию клеток с помощью системы CRISPR/Cas – популярного инструмента генной инженерии.
Об авторах
А. М. ЮнусоваРоссия
Новосибирск, Россия
Н. Р. Баттулин
Россия
Новосибирск, Россия
Список литературы
1. Amat F., Lemon W., Mossing D.P., McDole K., Wan Y., Branson K., Myers E.W., Keller P.J. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods. 2014;11:951-958. https://doi.org/10.1038/nmeth.3036.
2. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 1979;26:557-573. https://doi.org/10.1016/S0006-3495(79)85271- 6.
3. Balakier H., Pedersen R.A. Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryos. Dev. Biol. 1982;90:352-362. https://doi.org/10.1016/0012-1606(82)90384-0.
4. Barrangou R., Fremaux C., Deveau H., Richards M., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-1712.DOI 10.1126/science.1138140.
5. Becker A.J., McCulloch E.A., Till J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452-454. https://doi.org/10.1038/197452a0.
6. Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A., Druid H., Jovinge S., Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98-102. https://doi.org/10.1126/science.1164680.
7. Bhang H.C., Ruddy D.A., Krishnamurthy Radhakrishna V., Caushi J.X., Zhao R., Hims M.M., Singh A.P., Kao I., Rakiec D., Shaw P., Balak M., Raza A., Ackley E., Keen N., Schlabach M.R., Palmer M., Leary R.J., Chiang D.Y., Sellers W.R., Michor F., Cooke V.G., Korn J.M., Stegmeier F. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 2015; 21:440-448. https://doi.org/10.1038/nm.3841.
8. Buckingham M.E., Meilhac S.M. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell. 2011;21(3):394-409. https://doi.org/10.1016/j.devcel. 2011.07.019.
9. Bystrykh L.V., Verovskaya E., Zwart E., Broekhuis M., de Haan G. Counting stem cells: methodological constraints. Nat. Methods. 2012;9:567-574. https://doi.org/10.1038/nmeth.2043.
10. Cai D., Cohen K.B., Luo T., Lichtman J.W., Sanes J.R. Improved tools for the Brainbow toolbox. Nat. Methods. 2013;10(6):540-547. https://doi.org/10.1038/nmeth.2450.
11. Capel B., Hawley R.G., Mintz B. Long- and short-lived murine hematopoietic stem cell clones individually identified with retroviral integration markers. Blood. 1990;75:2267-2270.
12. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. Science. 1994; 263:802-805. https://doi.org/10.1126/science.8303295.
13. Chen C.H., Puliafito A., Cox B.D., Primo L., Fang Y., Di Talia S., Poss K.D. Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Dev. Cell. 2016;36: 668-680. https://doi.org/10.1016/j.devcel.2016.02.017.
14. Cheung A.M.S., Nguyen L.V., Carles A., Beer P., Miller P.H., Knapp D.J.H.F., Dhillon K., Hirst M., Eaves C.J. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood. 2013;122:3129-3137. https://doi.org/10.1182/blood-2013-06-508432.
15. Conklin E.G. The organization and cell lineage of the ascidian egg. J. Acad. Natl. Sci. 1905;13:1-119. https://doi.org/10.1007/s13398-014-0173-7.2.
16. De Vries H. Atomic bomb effect: variation of radiocarbon in plants, shells, and snails in the past 4 years. Science. 1958;128:250-251. https://doi.org/10.1126/science.128.3318.250.
17. Dick J.E., Magli M.C., Huszar D., Phillips R.A., Bernstein A. Introduction of a selectable gene into primitive stem cells capable of longterm reconstitution of the hemopoietic system of W/Wv mice. Cell. 1985;42:71-79. https://doi.org/10.1016/S0092-8674(85)80102-1.
18. Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096.
19. Eagleson G.W., Harris W.A. Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurobiol. 1990;21:427-440. https://doi.org/10.1002/neu.480210305.
20. Gerlach C., Rohr J.C., Perié L., van Rooij N., van Heijst J.W.J., Velds A., Urbanus J., Naik S.H., Jacobs H., Beltman J.B., de Boer R.J., Schumacher T.N.M. Heterogeneous differentiation patterns of individual CD8+ T cells. Science. 2013;340:635-639. https://doi.org/10.1126/science.1235487.
21. Gerrits A., Dykstra B., Kalmykowa O.J., Klauke K., Verovskaya E., Broekhuis M.J.C., De Haan G., Bystrykh L.V. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood. 2010;115:2610-2618. https://doi.org/10.1182/blood-2009-06-229757.
22. Hadjieconomou D., Rotkopf S., Alexandre C., Bell D.M., Dickson B.J., Salecker I. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat. Methods. 2011;8:260- 266. https://doi.org/10.1038/nmeth.1567.
23. Holt C.E., Garlick N., Cornel E. Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron. 1990;4:203-214. https://doi.org/10.1016/0896-6273(90)90095-W.
24. Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262-1278. https://doi.org/10.1016/j.cell.2014.05.010.
25. Jordan C.T., Lemischka I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Gene Dev. 1990;4(2):220-232. https://doi.org/10.1101/gad.4.2.220.
26. Junker J.P., Spanjaard B., Peterson-Maduro J., Alemany A., Hu B., Florescu M., van Oudenaarden A. Massively parallel whole-organism lineage tracing using CRISPR/Cas9 induced genetic scars. BioRxiv. 2016. https://doi.org/10.1101/056499.
27. Kalhor R., Mali P., Church G.M. Rapidly evolving homing CRISPR barcodes. Nat. Methods. 2016. https://doi.org/10.1038/nmeth.4108.
28. Keller P.J., Schmidt A.D., Wittbrodt J., Stelzer E.H.K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008;322:1065-1069. https://doi.org/10.1126/science.1162493.
29. Kretzschmar K., Watt F.M. Lineage tracing. Cell. 2012;148:33-45. https://doi.org/10.1016/j.cell.2012.01.002.
30. Laukkanen M.O., Kuramoto K., Calmels B., Takatoku M., Von Kalle C., Donahue R.E., Dunbar C.E. Low-dose total body irradiation causes clonal fluctuation of primate hematopoietic stem and progenitor cells. Blood. 2005;105:1010-1015. https://doi.org/10.1182/blood-2004-04-1498.
31. Lawson K.A., Meneses J.J., Pedersen R.A. Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev. Biol. 1986;115:325-339. https://doi.org/10.1016/0012-1606(86)90253-8.
32. Levin I., Kromer B. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959-2003). Radiocarbon. 2004;46:1261-1272. https://doi.org/10.2458/azu_js_rc.46.4181.
33. Lichtman J.W., Livet J., Sanes J.R. A technicolour approach to the connectome. Nat. Rev. Neurosci. 2008;9:417-422. https://doi.org/10.1038/nrn2391.
34. Livet J., Weissman T.A., Kang H., Draft R.W., Lu J., Bennis R.A., Sanes J.R., Lichtman J.W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 2007;450:56-62. https://doi.org/10.1038/nature06293.
35. Lu R., Neff N.F., Quake S.R., Weissman I.L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 2011;29:928-933. https://doi.org/10.1038/nbt.1977.
36. Maetzig T., Brugman M.H., Bartels S., Heinz N., Kustikova O.S., Modlich U., Li Z., Galla M., Schiedlmeier B., Schambach A., Baum C. Polyclonal fluctuation of lentiviral vector- transduced and expanded murine hematopoietic stem cells. Blood. 2011;117:3053-3064. https://doi.org/10.1182/blood-2010-08-303222.
37. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA- guided human genome engineering via Cas9. Science. 2013;339:823-826. https://doi.org/10.1126/science.1232033.
38. Mazurier F., Gan O.I., McKenzie J.L., Doedens M., Dick J.E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood. 2004;103:545-552. https://doi.org/10.1182/blood- 2003-05-1558.
39. Mazzarello P. A unifying concept: the history of cell theory. Nat. Cell Biol. 1999;E13-E15. https://doi.org/10.1038/8964.
40. McKenna A., Findlay G.M., Gagnon J.A., Horwitz M.S., Schier A.F., Shendure J. Whole- organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016;353:aaf7907. https://doi.org/10.1126/science.aaf7907.
41. Naik S.H., Perié L., Swart E., Gerlach C., van Rooij N., de Boer R.J., Schumacher T.N. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature. 2013;496:229-232. https://doi.org/10.1038/nature12013.
42. Naik S.H., Schumacher T.N., Perié L. Cellular barcoding: A technical appraisal. Exp. Hematol. 2014. https://doi.org/10.1016/j.exphem.2014.05.003.
43. Nguyen L.V., Cox C.L., Eirew P., Knapp D.J., Pellacani D., Kannan N., Carles A., Moksa M., Balani S., Shah S., Hirst M., Aparicio S., Eaves C.J. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat. Commun. 2014a;5:5871. https://doi.org/10.1038/ncomms6871.
44. Nguyen L.V., Makarem M., Carles A., Moksa M., Kannan N., Pandoh P., Eirew P., Osako T., Kardel M., Cheung A.M.S., Kennedy W., Tse K., Zeng T., Zhao Y., Humphries R.K., Aparicio S., Eaves C.J., Hirst M. Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell. 2014b;1-11. https://doi.org/10.1016/j.stem.2013. 12.011.
45. Nydal R., Lovseth K. Distribution of radiocarbon from nuclear tests. Nature. 1965;206:1029-1031.
46. Palmer T.D., Takahashi J., Gage F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 1997;8:389- 404. https://doi.org/10.1006/mcne.1996.0595.
47. Perli S.S.D., Cui C.H., Lu T.K. Continuous genetic recording with selftargeting CRISPR-Cas in human cells. Science. 2016;353:aag0511. https://doi.org/10.1126/science.aag0511.
48. Rosenquist G.C. Location and movements of cardiogenic cells in the chick embryo: The heart-forming portion of the primitive streak. Dev. Biol. 1970;22:461-475. https://doi.org/10.1016/0012-1606(70)90163-6.
49. Schepers K., Swart E., van Heijst J.W.J., Gerlach C., Castrucci M., Sie D., Heimerikx M., Velds A., Kerkhoven R.M., Arens R., Schumacher T.N.M. Dissecting T cell lineage relationships by cellular barcoding. J. Exp. Med. 2008;205:2309-2318. https://doi.org/10.1084/jem.20072462.
50. Schmidt S.T., Zimmerman S.M., Wang J., Kim S.K., Quake S.R. Cell lineage tracing using nuclease barcoding. arXiv. 2016;1606:00786.
51. Schroeder T. Long-term single-cell imaging of mammalian stem cells. Nat. Methods. 2011;8:S30-S35. https://doi.org/10.1038/nmeth.1577.
52. Serbedzija G.N., Bronner-Fraser M., Fraser S.E. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development. 1989;106:809-816.
53. Smirnov A.V., Yunusova A.M., Lukyanchikova V.A., Battulin N.R. CRISPR/Cas9: a universal tool for genomic engineering. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):493-510. https://doi.org/10.18699/VJ16.175. (in Russian)
54. Spalding K.L., Bhardwaj R.D., Buchholz B.A., Druid H., Frisén J. Retrospective birth dating of cells in humans. Cell. 2005;122:133-143. https://doi.org/10.1016/j.cell.2005.04.028.
55. Stewart M.H., Bendall S.C., Levadoux-Martin M., Bhatia M. Clonal tracking of hESCs reveals differential contribution to functional assays. Nat. Methods. 2010;7:917-922. https://doi.org/10.1038/nmeth.1519.
56. Sulston J.E., Horvitz H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977;56:110-156. https://doi.org/10.1016/0012-1606(77)90158-0.
57. Sulston J., Schierenberg E., White J., Thomson J. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 1983; 100:64-119. https://doi.org/10.1016/0012- 1606(83)90201-4.
58. Till J.E., McCulloch E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 1961;175:145-149. https://doi.org/10.1667/RRXX28.1.
59. Van Heijst J.W.J., Gerlach C., Swart E., Sie D., Nunes-Alves C., Kerkhoven R.M., Arens R., Correia-Neves M., Schepers K., Schumacher T.N.M. Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science. 2009;325:1265-1269. https://doi.org/10.1126/science.1175455.
60. Verovskaya E., Broekhuis M.J.C., Zwart E., Ritsema M., van Os R., de Haan G., Bystrykh L.V. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood. 2013;122:523-532. https://doi.org/10.1182/blood-2013-01-481135.
61. Verovskaya E., Broekhuis M.J.C., Zwart E., Weersing E., Ritsema M., Bosman L.J., Poele T. van, Haan G. de, Bystrykh L.V. Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. J. Exp. Med. 2014;211: 487-497. https://doi.org/10.1084/jem.20131804.
62. Vogt W. Gestaltungsanalyse am amphibienkeim mit örtlicher vitalfärbung. II. Teil gastrulation und mesodermbildung bei urodelen und anuren. Wilhelm Roux Arch. Entwicklungsmech. Org. 1929;120: 384-706.
63. Weisblat D.A., Zackson S.L., Blair S.S., Young J.D. Cell lineage analysis by intracellular injection of fluorescent tracers. Science. 1980;209:1538-1541.
64. Wilson E.B. The cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J. Morphol. 1892;6(3):361-480. https://doi.org/10.1002/jmor.1050060301.
65. Wu A.M., Till J.E., Siminovitch L., McCulloch E.A. A cytological study of the capacity for differentiation of normal hemopoietic colony- forming cells. J. Cell Physiol. 1967;69:177- 184. https://doi.org/10.1002/jcp.1040690208.
66. Wu A.M., Till J.E., Siminovitch L., McCulloch E.A. Cytological evidence for a relationship between normal hemotopoietic colonyforming cells and cells of the lymphoid system. J. Exp. Med. 1968; 127:455-464. https://doi.org/10.1084/jem.127.3.455.
67. Wu C., Li B., Lu R., Koelle S.J., Yang Y., Jares A., Krouse A.E., Metzger M., Liang F., Lor K., Wu C.O., Donahue R.E., Chen I.S.Y., Weissman I., Dunbar C.E. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell. 2014;14:486-499. https://doi.org/10.1016/j.stem.2014.01.020.