Morphophysiological alterations caused by insertional mutagenesis of contactin 5 (Cntn5) gene in transgenic mice
https://doi.org/10.18699/VJ16.212
Abstract
Transgenesis has become a routine for modern biological studies. The most popular method for producing transgenic animals–pronuclear microinjection–frequently leads to host gene disruption due to a random transgene integration. In this paper, we report our analysis of morphophysiological parameters of the transgenic mouse line GM9, in which a transgene designed for milk-specific expression of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene was integrated into the intron of the Contactin 5 gene (Cntn5). We studied Cntn5 expression with RT-PCR and discovered that its expression in the brain, the primary organ of Cntn5 activity, was unperturbed. However, transgenic animals had less Cntn5 transcripts in other tissues such as the kidney and heart. In addition, we observed a decreased amount of splice variants of Cntn5 exons that flank the transgene integration site. These data suggest that the transgene integration event might affect proper Cntn5 splicing in some tissues. Publications exist that imply that some polymorphisms in the Cntn5 gene are associated with obesity and arterial hypertension in humans. We evaluated core parameters of lipid metabolism and heart activity in mice homozygous and heterozygous for Cntn5 mutation using wild- type animals as control. Our results uncovered that homozygous mutant mice have lower body weight than controls and that it is caused by slower accumulation of fat tissue. Cntn5 mutants also exhibit abnormalities in blood circulation: homozygous Cntn5 mutants are characterized by a higher blood pressure and heart beat rate, as well as faster blood flow in the tail vessels. Heterozygous animals showed intermediate results for all of these parameters.
About the Authors
A. V. SmirnovRussian Federation
Novosibirsk, Russia
N. A. Feofanova
Russian Federation
Novosibirsk, Russia
G. V. Kontsevaya
Russian Federation
Novosibirsk, Russia
M. V. Anisimova
Russian Federation
Novosibirsk, Russia
I. I. Kovrigin
Russian Federation
Novosibirsk, Russia
I. A. Serova
Russian Federation
Novosibirsk, Russia
M. P. Moshkin
Russian Federation
Novosibirsk, Russia
Tomsk, Russia
L. A. Gerlinskaya
Russian Federation
Novosibirsk, Russia
N. R. Battulin
Russian Federation
Novosibirsk, Russia
References
1. Ashrafi S., Betley J.N., Comer J.D., Brenner-Morton S., Bar V., Shimoda Y., Watanabe K., Peles E., Jessell T.M., Kaltschmidt J.A. Neuronal Ig/Caspr recognition promotes the formation of axoaxonic synapses in mouse spinal cord. Neuron. 2014;81(1):120-129.
2. Burbach J.P.H., van der Zwaag B. Contact in the genetics of autism and schizophrenia. Trends Neurosci. 2009;32:69-72.
3. Burkov I., Serova I., Battulin N., Smirnov A., Babkin I., Andreeva L., Dvoryanchikov G., Serov O. Expression of the human granulocytemacrophage colony stimulating factor (hGM-CSF) gene under control of the 5′-regulatory sequence of the goat alpha-S1-casein gene with and without a MAR element in transgenic mice. Transgenic Res. 2013;22(5):949-964.
4. Gogliotti R.G., Lutz C., Jorgensen M., Huebsch K., Koh S., Didonato C.J. Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiol. Dis. 2011;43(1):142-151. DOI 10.1016/j.nbd.2011.03.002.
5. Fernandez T., Morgan T., Davis N., Klin A., Morris A., Farhi A., Lifton R.P., State M.W. Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 2008;82:1385.
6. Fu C., Begum K., Overbeek P.A. Primary ovarian insufficiency induced by Fanconi anemia E mutation in a mouse model. PLoS ONE. 2016;11(3):e0144285. DOI 10.1371/journal.pone.0144285.
7. Kleijer K.T., Zuko A., Shimoda Y., Watanabe K., Burbach J.P. Contactin-5 expression during development and wiring of the thalamocortical system. Neuroscience. 2015;310:106-113.
8. Li H., Takeda Y., Niki H., Ogawa J., Kobayashi S., Kai N., Akasaka K., Asano M., Sudo K., Iwakura Y., Watanabe K. Aberrant responses to acoustic stimuli in mice deficient for neural recognition molecule NB-2. Eur. J. Neurosci. 2003;17(5):929-936.
9. Lionel A.C., Crosbie J., Barbosa N., Goodale T., Thiruvahindrapuram B., Rickaby J., Gazzellone M., Carson A.R., Howe J.L., Wang Z., Wei J., Stewart A.F., Roberts R., McPherson R., Fiebig A., Franke A., Schreiber S., Zwaigenbaum L., Fernandez B.A., Roberts W., Arnold P.D., Szatmari P., Marshall C.R., Schachar R., Scherer S.W. Rare copy number variation discovery and cross- disorder comparisons identify risk genes for ADHD. Sci. Transl. Med. 2011;3(95):95ra75. DOI 10.1126/scitranslmed.3002464.
10. Mattson D.L. Comparison of arterial blood pressure in different strains of mice. Am. J. Hypertens. 2001;14:405-408.
11. Morrow E.M., Yoo S.Y., Flavell S.W., Kim T.K., Lin Y., Hill R.S., Mukaddes N.M., Balkhy S., Gascon G., Hashmi A., Al-Saad S., Ware J., Joseph R.M., Greenblatt R., Gleason D., Ertelt J.A., Apse K.A., Bodell A., Partlow J.N., Barry B., Yao H., Markianos K., Ferland R.J., Greenberg M.E., Walsh C.A. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321: 218-223.
12. Nakabayashi K., Komaki G., Tajima A., Ando T., Ishikawa M., Nomoto J., Hata K., Oka A., Inoko H., Sasazuki T., Shirasawa S. Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J. Hum. Genet. 2009;54:531-537.
13. Nava C., Keren B., Mignot C., Rastetter A., Chantot-Bastaraud S., Faudet A., Fonteneau E., Amiet C., Laurent C., Jacquette A., Whalen S., Afenjar A., Périsse D., Doummar D., Dorison N., Leboyer M., Siffroi J.P., Cohen D., Brice A., Héron D., Depienne C. Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. Eur. J. Hum. Genet. 2013;975:1-8.
14. Nikpay M., Seda O., Tremblay J., Petrovich M., Gaudet D., Kotchen T.A., Cowley A.W., Hamet P. Genetic mapping of habitual substance use, obesity-related traits, responses to mental and physical stress, and heart rate and blood pressure measurements reveals shared genes that are overrepresented in the neural synapse. Hypertens. Res. 2012;35:585-591.
15. Ogawa J., Kaneko H., Masuda T., Nagata S., Hosoya H., Watanabe K. Novel neural adhesion molecules in the Contactin/F3 subgroup of the immunoglobulin superfamily: isolation and characterization of cDNAs from rat brain. Neurosci. Lett. 1996;218(3):173-176.
16. Roohi J., Montagna C., Tegay D.H., Palmer L.E., DeVincent C., Pomeroy J.C., Christian S.L., Nowak N., Hatchwell E. Disruption of contactin 4 in three subjects with autism spectrum disorder. J. Med. Genet. 2009;46:176-182.
17. Van Daalen E., Kemner C., Verbeek N.E., van der Zwaag B., Dijkhuizen T., Rump P., Houben R., van’t Slot R., de Jonge M.V., Staal W.G., Beemer F.A., Vorstman J.A.S., Burbach J.P.H., van Amstel H.K.P., Hochstenbach R., Brilstra E.H., Poot M. Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism. Neurogenetics. 2011;12:315-323.
18. Zuko A., Bouyain S., van der Zwaag B., Burbach J.P.H. Contactins: structural aspects in relation to developmental functions in brain disease. Adv. Protein Chem. Struct. Biol. 2011;84:143-180.
19. Zuko A., Kleijer K.T., Oguro-Ando A., Kas M.J., van Daalen E., van der Zwaag B., Burbach J.P. Contactins in the neurobiology of autism. Eur. J. Pharmacol. 2013;719(1-3):63-74.