Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Genome editing using CRISPR/ Cas9 system: a practical guide

https://doi.org/10.18699/VJ16.214

Abstract

Over the past few years, the CRISPR/Cas techniques have become a revolution in genome editing. Since the original paper on CRIPSR/Cas9 genome editing, researches have proposed numerous modifications of the key components of the CRISPR/Cas9 system to make it extremely efficient. Nowadays, CRISPR/Cas systems can be used not only to modify genomes, but also to control expression levels of defined genes, visualize loci of interest in the space of living cell nuclei, change methylation status of mammalian CpG sites, and to serve many other purposes. Due to an extremely high efficacy and ease of usage, the CRISPR/ Cas system has been employed in a large number of studies in various areas of biology and biotechnology. We have recently published a review describing various CRISPR/Cas systems, mechanisms of their functioning, and applications of the techniques in details. Despite the broad range of potential applications of CRISPR/Cas systems, they are mostly used for genome editing. And, however simple the system may be, there is a number of potential pitfalls on the way towards its use in CRISPR/Cas- naïve laboratory settings. In this article, we describe protocols of CRISPR/Cas9 system generation. We start with a short description of theoretical aspects underlying Cas9-mediated genome editing. Next, we describe a step-by-step protocol of guide RNA vector design and assembly, and several ways of qualitative and quantitative evaluations of the system. Finally, we report protocols of genome editing for modification of embryonic stem cells and zygotes.

About the Authors

A. G. Menzorov
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


V. A. Lukyanchikova
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk, Russia


A. N. Korablev
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk, Russia


I. A. Serova
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk, Russia


V. S. Fishman
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


References

1. Bindra R.S., Goglia A.G., Jasin M., Powell S.N. Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucl. Acids Res. 2013;41(11):e115-e115. DOI 10.1093/nar/gkt255.

2. Brinster R.L., Chen H.Y., Trumbauer M.E., Yagle M.K., Palmiter R.D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA. 1985;82(13): 4438-4442.

3. Bryja V., Bonilla S., Arenas E. Derivation of mouse embryonic stem cells. Nat. Protoc. 2006;1(4):2082-2087. DOI 10.1038/nprot.2006.355.

4. Chari R., Mali P., Moosburner M., Church G.M. Unraveling CRISPRCas9 genome engineering parameters via a library-on-library approach. Nature Methods. 2015;12(9):823-826. DOI 10.1038/nmeth.3473.

5. Datta S., Roychoudhury S., Ghosh A., Dasgupta D., Ghosh A., Chakraborty B., Roy S., Gupta S., Santra A.K., Datta S., Das K. Distinct distribution pattern of hepatitis B virus genotype C and D in liver tissue and serum of dual genotype infected liver cirrhosis and hepatocellular carcinoma patients. PloS One. 2014;9(7):e102573. DOI 10.1371/journal.pone.0102573.

6. Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013;31(9): 822-826. DOI 10.1038/nbt.2623.

7. Golding S.E., Rosenberg E., Khalil A., McEwen A., Holmes M., Neill S., Povirk L.F., Valerie K. Double strand break repair by homologous recombination is regulated by cell cycle- independent signaling via ATM in human glioma cells. J. Biol. Chemistry. 2004; 279(15):15402-15410. DOI 10.1074/jbc.M314191200.

8. Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, 1994.

9. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI 10.1126/science.1225829.

10. Kistler K., Vosshall L., Matthews B. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Report. 2015; 11(1):51-60. DOI 10.1016/j.celrep.2015.03.009.

11. Kouranova E., Forbes K., Zhao G., Warren J., Bartels A., Wu Y. CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 2016;27(6):464-475. DOI 10.1089/hum. 2016.009.

12. Kulkarni A.S., Fortunato E.A. Stimulation of homology-directed repair at I-SceI-induced DNA breaks during the permissive life cycle of human cytomegalovirus. J. Virology. 2011;85(12):6049-6054. DOI 10.1128/JVI.02514-10.

13. Li K., Wang G., Andersen T., Zhou P., Pu W.T. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One. 2014;9(8):e105779. DOI 10.1371/journal.pone.0105779.

14. Liu Y.G., Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649-650,652,654.

15. Pierce A.J., Hu P., Han M., Ellis N., Jasin M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes & Development. 2001;15(24):3237-3242. DOI 10.1101/gad.946401.

16. Pierce A.J., Johnson R.D., Thompson L.H., Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes & Development. 1999;13(20):2633-2638.

17. Sakurai T., Kamiyoshi A., Kawate H., Mori C., Watanabe S., Tanaka M. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci. Reports. 2016;6:20011. DOI 101038/srep20011.

18. Sambrook J.F., Russell D.W. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, 2001.

19. Shchelkunov S.N. Geneticheskaya inzheneriya [Genetic Engineering]. Novosibirsk, 2004. (in Russian)

20. Smirnov A.V., Yunusova A.M., Lukyanchikova V.A., Battulin N.R. CRISPR/Cas9: a universal tool for genomic engineering. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):493-510. DOI 10.18699/VJ16.175. (in Russian)

21. Smith A.M., Takeuchi R., Pellenz S., Davis L., Maizels N., Monnat R.J., Stoddard B.L. Generation of a nicking enzyme that stimulates sitespecific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc. Natl. Acad. Sci. 2009;106(13):5099-5104. DOI 10.1073/pnas.0810588106.

22. Windbichler N., Papathanos P.A., Catteruccia F., Ranson H., Burt A., Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucl. Acids Res. 2007;35(17): 5922-5933. DOI 10.1093/nar/gkm632.

23. Yang H., Wang H., Jaenisch R. Generating genetically modified mice using CRISPR/Cas- mediated genome engineering. Nat. Protocols. 2014;9:1956-1968.


Review

Views: 3542


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)