Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A comparative study of replicative properties of antitumor recombinant vaccinia viruses on human glioblastoma cell culture U87 and monkey kidney cell culture CV-1

https://doi.org/10.18699/VJ16.207

Abstract

In the world of today, virotherapy is one of the rapidly developing areas in the treatment of cancer, and its advantage is selective destruction of cancer cells with minimizing the destructive effect on normal cells of the body. A promising basis for the creation of oncolytic drugs is orthopoxviruses, which have a number of advantages over other viral vectors, and one of these advantages is a large capacity of the genome, which allows genes encoding proteins with antitumor properties to be cloned into their genome. In this study, we compared the replicative properties of ten variants of vaccinia virus (the strain LIVP of VACV) using human glioblastoma cell culture; some of these viruses have additional genes, such as the gene encoding granulocyte-macrophage colony stimulating factor, gene encoding apoptosis-inducing protein TRAIL and gene encoding green fluorescent protein. Furthermore, the virus with five virulence genes deleted (genes encoding hemagglutinin, γ-interferonbinding protein, thymidine kinase, complementbinding protein and Bcl2-like inhibitor of apoptosis), which has significantly lower reactogenicity and neurovirulence compared to the original strain LIVP of VACV, was studied. These data suggest that variants of vaccinia virus with a defective gene encoding thymidine kinase most actively replicate in glioblastoma cell culture.

About the Authors

R. A. Maksyutov
State Research Center of Virology and Biotechnology ”Vector”,
Russian Federation
Koltsovo, Novosibirsk region, Russia


I. V. Kolosova
State Research Center of Virology and Biotechnology ”Vector”
Russian Federation
Koltsovo, Novosibirsk region, Russia


T. V. Tregubchak
State Research Center of Virology and Biotechnology ”Vector”
Russian Federation
Koltsovo, Novosibirsk region, Russia


I. A. Razumov
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk region, Russia


S. N. Shchelkunov
State Research Center of Virology and Biotechnology ”Vector” Institute of Cytology and Genetics SB RAS
Russian Federation
Koltsovo, Novosibirsk region, Russia


References

1. Bienkowska-Szewczyk K., Szewczyk B. Expression of genes coding for viral glycoproteins in heterologous systems. Acta Biochim. Pol. 1999;2:325-339.

2. Chiocca E.A., Aguilar L.K., Bell S.D., Kaur B., Hardcastle J., Cavaliere R., McGregor J., Lo S., Ray-Chaudhuri A., Chakravarti A., Grecula J., Newton H., Harris K.S., Grossman R.G., Trask T.W., Baskin D.S., Monterroso C., Manzanera A.G., Aguilar-Cordova E., New P.Z. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 2011;29(27):3611-3619. DOI 10.1200/JCO.2011.35.5222.

3. Ding Z.Y., Wei Y.Q. Cancer biotherapy: Progress in China. Recent Advances Cancer Res. Ther. 2012:1-31. DOI 10.1016/B978-0-12-397833-2.00001-7.

4. Doniņa S., Strēle I., Proboka G., Auziņš J., Alberts P., Jonsson B., Venskus D., Muceniece A. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421-426. DOI 10.1097/CMR.0000000000000180.

5. Hulou M.M., Cho C.F., Chiocca E.A., Bjerkvig R. Experimental therapies: gene therapies and oncolytic viruses. Handb. Clin. Neurol. 2016;134:183-197. DOI 10.1016/B978-0-12-802997- 8.00011-6.

6. Jackson C., Westphal M., Quiñones-Hinojosa A. Complications of glioma surgery. Handb. Clin. Neurol. 2016;134:201-218. DOI 10.1016/B978-0-12-802997-8.00012-8.

7. Karim R., Palazzo C., Evrard B., Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J. Control. Release. 2016;227:23-37. DOI 10.1016/j.jconrel.2016.02.026.

8. Liang M. Clinical development of oncolytic viruses in China. Curr. Pharm. Biotechnol. 2012;13(9):1852-1857.

9. Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., Scheithauer B.W., Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114(2):97-109. DOI 10.1007/s00401-007-0243-4.

10. Maksyutov R.A., Tregubchak T.V., Denisova N.I., Maksyutov A.Z., Gavrilova E.V. Creating a modern platform comprising a set of oncolytic viruses with immune-stimulating properties. Rossiyskiy immunologicheskiy zhurnal = Russian Immunological Journal. 2013; 7(4):456-459. (in Russian)

11. Moolten F.L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;46(10):5276-5281.

12. Perry A., Wesseling P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016;134:71- 95. DOI 10.1016/B978-0-12-802997-8.00005-0.

13. Petrov I.S., Goncharova E.P., Kolosovа I.V., Pozdnyakov S.G., Schelkunov S.N., Zenkova M.A., Vlasov V.V. Antitumor effect of the LIVP-GFP recombinant vaccinia virus. Doklady Akademii nauk = Reports of the Academy of Sciences. 2013;451(5):592-597. (in Russian)

14. Pol J., Kroemer G., Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunol. 2015;5(1):e1115641. DOI 10.1080/2162402X.2015.1115641.

15. Snider J.W., Mehta M. Principles of radiation therapy. Handb. Clin. Neurol. 2016;134:131-147. DOI 10.1016/B978-0-12-802997-8.00008-6.

16. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987- 996.

17. Urazova L.N., Kuznetsova T.I. Oncolytic viruses in oncology. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2013;4: 28-35. (in Russian)

18. Weibel S., Raab V., Yu Y.A., Worschech A., Wang E., Marincola F.M., Szalay A.A. Viral- mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2011;11:68. DOI 10.1186/1471-2407-11-68.

19. Westphal M., Ylä-Herttuala S., Martin J., Warnke P., Menei P., Eckland D., Kinley J., Kay R., Ram Z.; ASPECT Study Group. Adenovirus- mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(9):823-833. DOI 10.1016/S1470-2045(13)70274-2.

20. Yakubitskyi S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Attenuation of vaccinia virus. Acta Naturae. 2015;7:108-117. (in Russian)

21. Zav’yalov E.L., Razumov I.A., Gerlinskaya L.A., Romashchenko A.V. In vivo MRI visualization of growth and morphology in the orthotopic xenotransplantation U87 glioblastoma mouse SCID model. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):460-465. DOI 10.18699/VJ15.061. (in Russian)


Review

Views: 548


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)