Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Renin-angiotensin-aldosterone system in ISIAH rats with stressinduced arterial hypertension

https://doi.org/10.18699/VJ16.216

Abstract

Because the renin-angiotensin system (RAS) has a wide range of opportunities in the regulation of fluid and electrolyte balance and arterial pressure, it is currently hypothesized that alterations in systemic circulating or local tissue RAS are some of the most important pathogenetic factors in the development of essential hypertension. The aim of the study was to investigate circulating and local tissue RAS activities in ISIAH rats with stress-induced arterial hypertension. We estimated the serum levels of renin, the angiotensin-converting enzyme, angiotensin II and aldosterone by an enzymelinked immunosorbent assay, and mRNA expression of RAS genes in kidney, adrenals and brain tissues was measured by the real-time polymerase chain reaction. The mRNA expression of the renin gene (Ren) in the ISIAH rats was significantly decreased as compared to the normotensive WAG rats, but plasma renin concentrations had no difference. At the same time, the serum levels of angiotensin II and aldosterone in the ISIAH rats were enhanced, which suggests the existence of an ectopic site of angiotensin synthesis. Expression of RAS genes in the adrenals of hypertensive rats was unchanged. By contrast, a significant increase of RAS genes expression was found in the brain tissues. The mRNA of the Ren gene was increased in the hypothalamus, and the mRNA of Ace gene was increased in the brain stem of the ISIAH rats. This may be indicative of a local increase of RAS activity in the brain tissues of ISIAH rats. Nevertheless, the results of the study define ISIAH rat strain as a model of human low-renin hypertension.

About the Authors

A. D. Dubinina
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


E. V. Antonov
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


L. A. Fedoseeva
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


E. N. Pivovarova
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


A. L. Markel
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


L. N. Ivanova
Institute of Cytology and Genetics SB RAS Novosibirsk State University
Russian Federation
Novosibirsk, Russia


References

1. Amstislavsky S., Welker P., Frühauf J.H., Maslova L., Ivanova L., Jen-sen B., Markel A.L., Bachman S. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH). Histochem. Cell Biol. 2006;125(6):651-659. DOI 10.1007/s00418-005-0118-5.

2. Biancardi V.C., Son S.J., Ahmadi S., Filosa J.A., Stern J.E. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014:63(3):572-579. DOI 10.1161/HYPERTENSIONAHA.113.01743.

3. Biancardi V.C., Stern J.E. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J. Physiol. 2016;594(6):1591-1600. DOI 10.1113/JP271584.

4. Buzueva I.I., Filyushina E.E., Shmerling M.D., Markel A.L., Jacobson G.S. The chronic stress influence on the adrenal glands structure in hypertensive ISIAH rats after preventive treatment with terazosin. Byulleten SO RAMN = Bulletin of SB RAMS. 2010;30(4):56-61. (in Russian)

5. Carey R.M., Siragy H.M. Newly recognized components of the reninangiotensin system: potential roles in cardiovascular and renal regulation. Endocr. Rev. 2003;24:261-271. DOI 10.1210/er.2003-0001.

6. Castrop H., Höcherl K., Kurtz A., Schweda F., Todorov V., Wagner C. Physiology of kidney renin. Physiol. Rev. 2010;90(2):607-673. DOI 10.1152/physrev.00011.2009.

7. Cherkasova O.P., Fedorov V.I. Renin activity in kidney and plasma in hereditary stress- induced arterial hypertension. Vestnik TGU = Tomsk State University Journal. 2006;21:167- 168. (in Russian)

8. Coble J.P., Grobe J.L., Johnson A.K., Sigmund C.D. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;308:R238-R249. DOI 10.1152/ajpregu.00486.2014.

9. Coffman T.M., Crowley S.D. Kidney in hypertension: guyton redux. Hypertension. 2008;51(4):811-816. DOI 10.1161/HYPERTENSIONAHA.105.063636.

10. Frigolet M.E., Torres N., Tovar A.R. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J. Nutr. Biochem. 2013;24:2003-2015. DOI 10.1016/j.jnutbio.2013.07.002.

11. Langheinrich M., Lee M.A., Böhm M., Pinto Y.M., Ganten D., Paul M. The hypertensive Ren-2 transgenic rat TGR (mIXEN) 27 in hypertension research – characteristics and functional aspects. Am. J. Hepertens. 1996;9:506-512.

12. Marcus Y., Shefer G., Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol. Cell. Endocrinol. 2013;378:1-14.

13. Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 2007;195(3):439-450. DOI 10.1677/JOE-07-0254.

14. Montani J.-P., Van Vliet B.N. General physiology and pathophysiology of the renin- angiotensin system. Handbook of Experimental Pharmacology. Ed. T. Unger, B.A. Scholkens. Berlin: Springer Verlag, 2004;163(1):3-29.

15. Mullins J.J., Peters J., Garnten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature. 1990;344:541-544. DOI 10.1038/344541a0.

16. Pardridge W.M. Neuropeptides and the blood-brain barrier. Ann. Rev. Physiol. 1983;45:73-82. DOI 10.1146/annurev.ph.45.030183.000445.

17. Pelisch N., Hosomi N., Ueno M., Nakano D., Hitomi H., Mogi M., Shimada K., Kobori H., Horiuchi M., Sakamoto H., Matsumoto M., Kohno M., Nishiyama A. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 2011;24(3):362-368. DOI 10.1038/ajh.2010.241.

18. Pivovarova Е.N., Dushkin М.I., Perepechaeva M.L., Коbzev V.F., Тrufakin V.А., Маrkel А.L. All signs of metabolic syndrome in hypertensive ISIAH rats are associated with elevated activity of transcription factors PPAR, LXR, PXR, and CAR in the liver. Biomeditsinskaya khimiya = Biomedical Chemistry. 2011;57(4):435-445. (in Russian)

19. Sahay M., Sahay R.K. Low renin hypertension. Indian J. Endocrinol. Metab. 2012;16(5):728-740. DOI 10.4103/2230-8210.100665.

20. Yasue S., Masuzaki H., Okada S., Ishii T., Kozuka C., Tanaka T., Fujikura J., Ebihara K., Hosoda K., Katsurada A., Ohashi N., Urushihara M., Kobori H., Morimoto N., Kawazoe T., Naitoh M., Okada M., Sakaue H., Suzuki S., Nakao K. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am. J. Hypertens. 2010;23:425-431. DOI 10.1038/ajh.2009.263.

21. Zhang M., Mao Y., Ramirez S.H., Tuma R.F., Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171(3):852-858. DOI 10.1016/j.neuroscience.2010.09.029.


Review

Views: 890


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)