ДОЗОВАЯ КОМПЕНСАЦИЯ: РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ ПОЛОВЫХ ХРОМОСОМ

Полный текст:


Аннотация

Дозовая компенсация генов характерна для различных таксонов, представители которых имеют гетероморфные половые хромосомы. Считается, что механизмы дозовой компенсации появились из-за необходимости устранить различия в дозе генов между полами, возникающие в ходе эволюции половых хромосом. Исследования на примере половых хромосом Drosophila melanogaster, Caenorhabditis elegans и млекопитающих показывают, что, несмотря на общую причину возникновения дозовой компенсации, для регуляции уровня экспрессии генов Х-хромосомы могут использоваться совершенно разные принципы. Было также обнаружено, что значение имеет не только равный уровень экспрессии генов Х-хромосомы между полами, но и транскрипционный баланс между Х-хромосомой и аутосомами. Более детальное изучение механизмов дозовой компенсации позволило установить, что гены Х-хромосомы в различной степени подвержены их влиянию. Похожая закономерность была выявлена и при изучении дозовой компенсации генов Z-хромосомы у птиц и бабочек. В обзоре суммированы имеющиеся на сегодняшний день данные о процессе дозовой компенсации и его механизмах.


Об авторе

Е. В. Дементьева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Список литературы

1. Аноприенко О.В., Закиян С.М. Эволюция половых хромосом млекопитающих: взаимодействие генетических и эпигенетических факторов // Генетика. 2004. Т. 40. С. 1013–1033.

2. Шевченко А.И., Павлова С.В., Дементьева Е.В. и др. Модификации хроматина в процессе инактивации Х-хромосомы у самок млекопитающих // Генетика. 2006. Т. 42. С. 1225–1234.

3. Akhtar A., Becker P.B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila // Mol. Cell. 2000. V. 5. P. 367–375.

4. Alekseyenko A.A., Peng S., Larschan E. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome // Cell. 2008. V. 134. P. 599–609.

5. Bacher C.P., Guggiari M., Brors B. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation // Nat. Cell Biol. 2006. V. 8. P. 293–299.

6. Bailey J.A., Carrel L., Chakravarti A. et al. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis // Proc. Natl Acad. Sci. USA. 2000. V. 97. P. 6634–6639.

7. Bell O., Conrad T., Kind J. et al. Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage compensation by enhancing recruitment of the MSL complex in Drosophila melanogaster // Mol. Cell Biol. 2008. V. 28. P. 3401–3409.

8. Brown C.J., Greally J.M. A stain upon the silence: genes escaping X inactivation // Trends Genet. 2003. V. 19. P. 432–438.

9. Cai Y., Jin J., Swanson S.K. et al. Subunit composition and substrate specifi city of a MOF-containing histone acetyltransferase distinct from the male-specifi c lethal (MSL) complex // J. Biol. Chem. 2010. V. 285. P. 4268–4272.

10. Cao R., Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3 // Curr. Opin. Genet. Dev. 2004. V. 14. P. 155–164.

11. Carrel L., Willard H.F. X-inactivation profi le reveals extensive variability in X-linked gene expression in females // Nature. 2005. V. 434. P. 400–404.

12. Charlesworth B. The evolution of sex chromosomes // Science. 1991. V. 251. P. 1030–1033.

13. Chuang P.T., Albertson D.G., Meyer B.J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome // Cell. 1994. V. 79. P. 459–474.

14. Chuang P.T., Lieb J.D., Meyer B.J. Sex-specifi c assembly of a dosage compensation complex on the nematode X chromosome // Science. 1996. V. 274. P. 1736–1739.

15. Csankovszki G., Petty E.L., Collette K.S. The worm solution: a chromosome-full of condensin helps gene expression go down // Chromosome Res. 2009. V. 17. P. 621–635. Davis T.L., Meyer B.J. SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome // Development. 1997. V. 124. P. 1019–1031.

16. Dawes H.E., Berlin D.S., Lapidus D.M. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate // Science. 1999. V. 284. P. 1800–1804.

17. de Napoles M., Mermoud J.E., Wakao R. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation // Dev. Cell. 2004. V. 7. P. 663–676.

18. Dementyeva E.V., Shevchenko A.I., Zakian S.M. X-chromosome upregulation and inactivation: two sides of the dosage compensation mechanism in mammals // BioЕssays. 2009. V. 31. P. 21–28.

19. Deng H., Bao X., Cai W. et al. Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila // Development. 2008. V. 135. P. 699–705.

20. Disteche C.M. Escape from X inactivation in human and mouse // Trends Genet. 1995. V. 11. P. 17–22.

21. Ellegren H., Hultin-Rosenberg L., Brunstrom B. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes // BMC Biol. 2007. V. 5. P. 40.

22. Erwin J.A., Lee J.T. New twists in X-chromosome inactivation // Curr. Opin. Cell Biol. 2008. V. 20. P. 349–355.

23. Escamilla-Del-Arenal M., da Rocha S.T., Heard E. Evolutionary diversity and developmental regulation of Xchromosome inactivation // Hum. Genet. 2011. V. 130. P. 307–327.

24. Fang J., Chen T., Chadwick B. et al. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation // J. Biol. Chem. 2004. V. 279. P. 52812–52815.

25. Gilfi llan G.D., Straub T., de Wit E. et al. Chromosome-wide gene-specifi c targeting of the Drosophila dosage compensation complex // Genes Dev. 2006. V. 20. P. 858–870.

26. Gupta V., Parisi M., Sturgill D. et al. Global analysis of X-chromosome dosage compensation // J. Biol. 2006. V. 5. P. 3.

27. Hamada F.N., Park P.J., Gordadze P.R. et al. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster // Genes Dev. 2005. V. 19. P. 2289–2294.

28. Heard E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome // Curr. Opin. Genet. Dev. 2005. V. 15. P. 482–489.

29. Heard E., Disteche C.M. Dosage compensation in mammals: fi ne-tuning the expression of the X chromosome // Genes Dev. 2006. V. 20. P. 1848–1867.

30. Itoh Y., Melamed E., Yang X. et al. Dosage compensation is less effective in birds than in mammals // J. Biol. 2007. V. 6. P. 2.

31. Jans J., Gladden J.M., Ralston E.J. et al. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome // Genes Dev. 2009. V. 23. P. 602–618.

32. Jin Y., Wang Y., Johansen J. et al. JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specifi c lethal (MSL) dosage compensation complex // J. Cell Biol. 2000. V. 149. P. 1005–1010.

33. Johnston C.M., Lovell F.L., Leongamornlert D.A. et al. Largescale population study of human cell lines indicates that dosage compensation is virtually complete // PLoS Genet. 2008. V. 4. e9.

34. Larschan E., Alekseyenko A.A., Gortchakov A.A. et al. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism // Mol. Cell. 2007. V. 28. P. 121–133.

35. Legube G., McWeeney S.K., Lercher M.J. et al. X-chromosome-wide profi ling of MSL-1 distribution and dosage compensation in Drosophila // Genes Dev. 2006. V. 20. P. 871–883.

36. Lerach S., Zhang W., Deng H. et al. JIL-1 kinase, a member of the male-specifi c lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila // Genesis. 2005. V. 43. P. 213–215.

37. Li F., Schiemann A.H., Scott M.J. Incorporation of the noncoding roX RNAs alters the chromatin-binding specifi city of the Drosophila MSL1/MSL2 complex // Mol. Cell Biol. 2008. V. 28. P. 1252–1264.

38. Lieb J.D., Albrecht M.R., Chuang P.T. et al. MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation // Cell. 1998. V. 92. P. 265–277.

39. Lieb J.D., Capowski E.E., Meneely P. et al. DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode // Science. 1996. V. 274. P. 1732–1736.

40. Lin H., Gupta V., Vermilyea M.D. et al. Dosage compensation in the mouse balances up-regulation and silencing of Xlinked genes // PLoS Biol. 2007. V. 5. e326.

41. Lucchesi J.C., Kelly W.G., Panning B. Chromatin remodeling in dosage compensation // Annu. Rev. Genet. 2005. V. 39. P. 615–651.

42. Lyon M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.) // Nature. 1961. V. 190. P. 372–373.

43. Lyon M.F. X-chromosome inactivation: a repeat hypothesis // Cytogenet. Cell Genet. 1998. V. 80. P. 133–137.

44. Mank J.E. The W, X, Y and Z of sex-chromosome dosage compensation // Trends Genet. 2009. V. 25. P. 226–233.

45. Melamed E., Arnold A.P. Regional differences in dosage compensation on the chicken Z chromosome // Genome Biol. 2007. V. 8. P. R202.

46. Mets D.G., Meyer B.J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure // Cell. 2009. V. 139. P. 73–86.

47. Meyer B.J. Targeting X chromosomes for repression // Curr. Opin. Genet. Dev. 2010. V. 20. P. 179–189.

48. Meyer B.J. X-сhromosome dosage compensation // Worm-Book. 2005. V. P. 1–14.

49. Nagy P.L., Griesenbeck J., Kornberg R.D. et al. A trithoraxgroup complex purifi ed from Saccharomyces cerevisiae is required for methylation of histone H3 // Proc. Natl Acad. Sci. USA. 2002. V. 99. P. 90–94.

50. Nguyen D.K., Disteche C.M. Dosage compensation of the active X chromosome in mammals // Nat. Genet. 2006. V. 38. P. 47–53.

51. Ohno S. Sex Chromosomes and Sex-linked Genes. Berlin: Springer, 1967.

52. Park Y., Kuroda M.I. Epigenetic aspects of X-chromosome dosage compensation // Science. 2001. V. 293. P. 1083–1085.

53. Prestel M., Feller C., Straub T. et al. The activation potential of MOF is constrained for dosage compensation // Mol. Cell. 2010. V. 38. P. 815–826.

54. Raja S.J., Charapitsa I., Conrad T. et al. The nonspecifi c lethal complex is a transcriptional regulator in Drosophila // Mol. Cell. 2010. V. 38. P. 827–841.

55. Reik W., Lewis A. Co-evolution of X-chromosome inactivation and imprinting in mammals // Nat. Rev. Genet. 2005. V. 6. P. 403–410.

56. Ross M.T., Grafham D.V., Coffey A.J. et al. The DNA sequence of the human X chromosome // Nature. 2005. V. 434. P. 325–337.

57. Silva J., Mak W., Zvetkova I. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes // Dev. Cell. 2003. V. 4. P. 481–495.

58. Straub T., Becker P.B. Dosage compensation: the beginning and end of generalization // Nat. Rev. Genet. 2007. V. 8. P. 47–57.

59. Taipale M., Rea S., Richter K. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells // Mol. Cell. Biol. 2005. V. 25. P. 6798–6810.

60. Tsai C.J., Mets D.G., Albrecht M.R. et al. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit // Genes Dev. 2008. V. 22. P. 194–211.

61. Vicoso B., Bachtrog D. Progress and prospects toward our understanding of the evolution of dosage compensation // Chromosome Res. 2009. V. 17. P. 585–602.

62. Wutz A., Gribnau J. X inactivation Xplained // Curr. Opin. Genet. Dev. 2007. V. 17. P. 387–393.

63. Xu N., Tsai C.L., Lee J.T. Transient homologous chromosome pairing marks the onset of X inactivation // Science. 2006. V. 311. P. 1149–1152.

64. Yang F., Babak T., Shendure J. et al. Global survey of escape from X inactivation by RNA-sequencing in mouse // Genome Res. 2010. V. 20. P. 614–622.

65. Yen Z.C., Meyer I.M., Karalic S. et al. A cross-species comparison of X-chromosome inactivation in Eutheria // Genomics. 2007. V. 90. P. 453–463.

66. Yonker S.A., Meyer B.J. Recruitment of C. elegans dosage compensation proteins for gene-specifi c versus chromosome-wide repression // Development. 2003. V. 130. P. 6519–6532.

67. Zakharova I.S., Shevchenko A.I., Zakian S.M. Monoallelic gene expression in mammals // Chromosoma. 2009. V. 118. P. 279–290.

68. Zha X., Xia Q., Duan J. et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori // Insect. Biochem. Mol. Biol. 2009. V. 39. P. 315–321.

69. Zhang W., Deng H., Bao X. et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifi cations and heterochromatic spreading in Drosophila // Development. 2006. V. 133. P. 229–235.


Дополнительные файлы

Просмотров: 206

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)