Preview

Vavilov Journal of Genetics and Breeding

Advanced search

DOSAGE COMPENSATION: REGULATION OF SEX CHROMOSOME GENE EXPRESSION

Abstract

Dosage compensation is observed in various taxa of organisms with heteromorphic sex chromosomes. Dosage compensation mechanisms are thought to have arisen to eliminate differences in gene dosage between sexes that appeared in the course of sex chromosome evolution. Study of this process in the sex chromosomes of Drosophila melanogaster, Caenorhabditis elegans, and mammals has shown that, despite the common reason of dosage compensation origin, entirely different ways were elaborated to regulate X-linked gene expression level. It has also been found that not only equal levels of X-linked gene expression between sexes but also the transcription balance between the X chromosome and autosomes is important. Detailed examination of dosage compensation mechanisms demonstrates that X-linked genes are differently involved in the dosage compensation system. A similar trend is observed in studies of dosage compensation of Z-linked genes in birds and butterflies. Current data on the dosage compensation process and mechanisms governing it are summarized.

About the Author

E. V. Dementyeva
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Аноприенко О.В., Закиян С.М. Эволюция половых хромосом млекопитающих: взаимодействие генетических и эпигенетических факторов // Генетика. 2004. Т. 40. С. 1013–1033.

2. Шевченко А.И., Павлова С.В., Дементьева Е.В. и др. Модификации хроматина в процессе инактивации Х-хромосомы у самок млекопитающих // Генетика. 2006. Т. 42. С. 1225–1234.

3. Akhtar A., Becker P.B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila // Mol. Cell. 2000. V. 5. P. 367–375.

4. Alekseyenko A.A., Peng S., Larschan E. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome // Cell. 2008. V. 134. P. 599–609.

5. Bacher C.P., Guggiari M., Brors B. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation // Nat. Cell Biol. 2006. V. 8. P. 293–299.

6. Bailey J.A., Carrel L., Chakravarti A. et al. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis // Proc. Natl Acad. Sci. USA. 2000. V. 97. P. 6634–6639.

7. Bell O., Conrad T., Kind J. et al. Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage compensation by enhancing recruitment of the MSL complex in Drosophila melanogaster // Mol. Cell Biol. 2008. V. 28. P. 3401–3409.

8. Brown C.J., Greally J.M. A stain upon the silence: genes escaping X inactivation // Trends Genet. 2003. V. 19. P. 432–438.

9. Cai Y., Jin J., Swanson S.K. et al. Subunit composition and substrate specifi city of a MOF-containing histone acetyltransferase distinct from the male-specifi c lethal (MSL) complex // J. Biol. Chem. 2010. V. 285. P. 4268–4272.

10. Cao R., Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3 // Curr. Opin. Genet. Dev. 2004. V. 14. P. 155–164.

11. Carrel L., Willard H.F. X-inactivation profi le reveals extensive variability in X-linked gene expression in females // Nature. 2005. V. 434. P. 400–404.

12. Charlesworth B. The evolution of sex chromosomes // Science. 1991. V. 251. P. 1030–1033.

13. Chuang P.T., Albertson D.G., Meyer B.J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome // Cell. 1994. V. 79. P. 459–474.

14. Chuang P.T., Lieb J.D., Meyer B.J. Sex-specifi c assembly of a dosage compensation complex on the nematode X chromosome // Science. 1996. V. 274. P. 1736–1739.

15. Csankovszki G., Petty E.L., Collette K.S. The worm solution: a chromosome-full of condensin helps gene expression go down // Chromosome Res. 2009. V. 17. P. 621–635. Davis T.L., Meyer B.J. SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome // Development. 1997. V. 124. P. 1019–1031.

16. Dawes H.E., Berlin D.S., Lapidus D.M. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate // Science. 1999. V. 284. P. 1800–1804.

17. de Napoles M., Mermoud J.E., Wakao R. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation // Dev. Cell. 2004. V. 7. P. 663–676.

18. Dementyeva E.V., Shevchenko A.I., Zakian S.M. X-chromosome upregulation and inactivation: two sides of the dosage compensation mechanism in mammals // BioЕssays. 2009. V. 31. P. 21–28.

19. Deng H., Bao X., Cai W. et al. Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila // Development. 2008. V. 135. P. 699–705.

20. Disteche C.M. Escape from X inactivation in human and mouse // Trends Genet. 1995. V. 11. P. 17–22.

21. Ellegren H., Hultin-Rosenberg L., Brunstrom B. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes // BMC Biol. 2007. V. 5. P. 40.

22. Erwin J.A., Lee J.T. New twists in X-chromosome inactivation // Curr. Opin. Cell Biol. 2008. V. 20. P. 349–355.

23. Escamilla-Del-Arenal M., da Rocha S.T., Heard E. Evolutionary diversity and developmental regulation of Xchromosome inactivation // Hum. Genet. 2011. V. 130. P. 307–327.

24. Fang J., Chen T., Chadwick B. et al. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation // J. Biol. Chem. 2004. V. 279. P. 52812–52815.

25. Gilfi llan G.D., Straub T., de Wit E. et al. Chromosome-wide gene-specifi c targeting of the Drosophila dosage compensation complex // Genes Dev. 2006. V. 20. P. 858–870.

26. Gupta V., Parisi M., Sturgill D. et al. Global analysis of X-chromosome dosage compensation // J. Biol. 2006. V. 5. P. 3.

27. Hamada F.N., Park P.J., Gordadze P.R. et al. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster // Genes Dev. 2005. V. 19. P. 2289–2294.

28. Heard E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome // Curr. Opin. Genet. Dev. 2005. V. 15. P. 482–489.

29. Heard E., Disteche C.M. Dosage compensation in mammals: fi ne-tuning the expression of the X chromosome // Genes Dev. 2006. V. 20. P. 1848–1867.

30. Itoh Y., Melamed E., Yang X. et al. Dosage compensation is less effective in birds than in mammals // J. Biol. 2007. V. 6. P. 2.

31. Jans J., Gladden J.M., Ralston E.J. et al. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome // Genes Dev. 2009. V. 23. P. 602–618.

32. Jin Y., Wang Y., Johansen J. et al. JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specifi c lethal (MSL) dosage compensation complex // J. Cell Biol. 2000. V. 149. P. 1005–1010.

33. Johnston C.M., Lovell F.L., Leongamornlert D.A. et al. Largescale population study of human cell lines indicates that dosage compensation is virtually complete // PLoS Genet. 2008. V. 4. e9.

34. Larschan E., Alekseyenko A.A., Gortchakov A.A. et al. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism // Mol. Cell. 2007. V. 28. P. 121–133.

35. Legube G., McWeeney S.K., Lercher M.J. et al. X-chromosome-wide profi ling of MSL-1 distribution and dosage compensation in Drosophila // Genes Dev. 2006. V. 20. P. 871–883.

36. Lerach S., Zhang W., Deng H. et al. JIL-1 kinase, a member of the male-specifi c lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila // Genesis. 2005. V. 43. P. 213–215.

37. Li F., Schiemann A.H., Scott M.J. Incorporation of the noncoding roX RNAs alters the chromatin-binding specifi city of the Drosophila MSL1/MSL2 complex // Mol. Cell Biol. 2008. V. 28. P. 1252–1264.

38. Lieb J.D., Albrecht M.R., Chuang P.T. et al. MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation // Cell. 1998. V. 92. P. 265–277.

39. Lieb J.D., Capowski E.E., Meneely P. et al. DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode // Science. 1996. V. 274. P. 1732–1736.

40. Lin H., Gupta V., Vermilyea M.D. et al. Dosage compensation in the mouse balances up-regulation and silencing of Xlinked genes // PLoS Biol. 2007. V. 5. e326.

41. Lucchesi J.C., Kelly W.G., Panning B. Chromatin remodeling in dosage compensation // Annu. Rev. Genet. 2005. V. 39. P. 615–651.

42. Lyon M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.) // Nature. 1961. V. 190. P. 372–373.

43. Lyon M.F. X-chromosome inactivation: a repeat hypothesis // Cytogenet. Cell Genet. 1998. V. 80. P. 133–137.

44. Mank J.E. The W, X, Y and Z of sex-chromosome dosage compensation // Trends Genet. 2009. V. 25. P. 226–233.

45. Melamed E., Arnold A.P. Regional differences in dosage compensation on the chicken Z chromosome // Genome Biol. 2007. V. 8. P. R202.

46. Mets D.G., Meyer B.J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure // Cell. 2009. V. 139. P. 73–86.

47. Meyer B.J. Targeting X chromosomes for repression // Curr. Opin. Genet. Dev. 2010. V. 20. P. 179–189.

48. Meyer B.J. X-сhromosome dosage compensation // Worm-Book. 2005. V. P. 1–14.

49. Nagy P.L., Griesenbeck J., Kornberg R.D. et al. A trithoraxgroup complex purifi ed from Saccharomyces cerevisiae is required for methylation of histone H3 // Proc. Natl Acad. Sci. USA. 2002. V. 99. P. 90–94.

50. Nguyen D.K., Disteche C.M. Dosage compensation of the active X chromosome in mammals // Nat. Genet. 2006. V. 38. P. 47–53.

51. Ohno S. Sex Chromosomes and Sex-linked Genes. Berlin: Springer, 1967.

52. Park Y., Kuroda M.I. Epigenetic aspects of X-chromosome dosage compensation // Science. 2001. V. 293. P. 1083–1085.

53. Prestel M., Feller C., Straub T. et al. The activation potential of MOF is constrained for dosage compensation // Mol. Cell. 2010. V. 38. P. 815–826.

54. Raja S.J., Charapitsa I., Conrad T. et al. The nonspecifi c lethal complex is a transcriptional regulator in Drosophila // Mol. Cell. 2010. V. 38. P. 827–841.

55. Reik W., Lewis A. Co-evolution of X-chromosome inactivation and imprinting in mammals // Nat. Rev. Genet. 2005. V. 6. P. 403–410.

56. Ross M.T., Grafham D.V., Coffey A.J. et al. The DNA sequence of the human X chromosome // Nature. 2005. V. 434. P. 325–337.

57. Silva J., Mak W., Zvetkova I. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes // Dev. Cell. 2003. V. 4. P. 481–495.

58. Straub T., Becker P.B. Dosage compensation: the beginning and end of generalization // Nat. Rev. Genet. 2007. V. 8. P. 47–57.

59. Taipale M., Rea S., Richter K. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells // Mol. Cell. Biol. 2005. V. 25. P. 6798–6810.

60. Tsai C.J., Mets D.G., Albrecht M.R. et al. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit // Genes Dev. 2008. V. 22. P. 194–211.

61. Vicoso B., Bachtrog D. Progress and prospects toward our understanding of the evolution of dosage compensation // Chromosome Res. 2009. V. 17. P. 585–602.

62. Wutz A., Gribnau J. X inactivation Xplained // Curr. Opin. Genet. Dev. 2007. V. 17. P. 387–393.

63. Xu N., Tsai C.L., Lee J.T. Transient homologous chromosome pairing marks the onset of X inactivation // Science. 2006. V. 311. P. 1149–1152.

64. Yang F., Babak T., Shendure J. et al. Global survey of escape from X inactivation by RNA-sequencing in mouse // Genome Res. 2010. V. 20. P. 614–622.

65. Yen Z.C., Meyer I.M., Karalic S. et al. A cross-species comparison of X-chromosome inactivation in Eutheria // Genomics. 2007. V. 90. P. 453–463.

66. Yonker S.A., Meyer B.J. Recruitment of C. elegans dosage compensation proteins for gene-specifi c versus chromosome-wide repression // Development. 2003. V. 130. P. 6519–6532.

67. Zakharova I.S., Shevchenko A.I., Zakian S.M. Monoallelic gene expression in mammals // Chromosoma. 2009. V. 118. P. 279–290.

68. Zha X., Xia Q., Duan J. et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori // Insect. Biochem. Mol. Biol. 2009. V. 39. P. 315–321.

69. Zhang W., Deng H., Bao X. et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifi cations and heterochromatic spreading in Drosophila // Development. 2006. V. 133. P. 229–235.


Review

Views: 1842


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)