Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Olfactory transport efficiency of the manganese oxide nanoparticles (II) after their single or multiple intranasal administrations

https://doi.org/10.18699/VJ17.248

Abstract

In experiments with reusable inhalation of nano-sized metal oxide particles, it has been shown that there is no significant relationship between the number of presentations and the metal concentration in the olfactory bulb. This fact raises the question of a possible decrease in the efficiency of particulate capturing by the olfactory epithelium after their repeated application into the nasal cavity. In this study, we compared the effectiveness of nasal transport of paramagnetic nanoparticles after their single and multiple intranasal administration and evaluated their effects on the morphological and functional characteristics of the olfactory system. Based on the data, the accumulation of MnO-NPs in the olfactory bulb of mice was reduced after repeated intranasal application. In addition, the decrease in the efficiency of olfactory transport observed after repeated administration of MnO-NPs was partially restored by intranasal application of mucolytic (0.01 M N-acetyl-L-cysteine). In this case, the concentration of particles in the olfactory bulb was proportional to the volume of the structure, which in particular depends on the number of synaptic contacts between the mitral cell of the olfactory bulb (OB) and olfactory epithelium (OE). It should be noted that multiple intranasal injections of MnO-NPs reduce mouse OE thickness. Thus, repeated intranasal introduction of MnO-NPs reduces the efficiency of nanoparticle olfactory transport from the nasal cavity to the brain, which is combined with the increase in the viscosity of the mucosal layer and the reduction in the number of synaptic contacts between OB and OE. These results indicate the presence of the natural mechanisms of protection against the penetration of pathogens and xenobiotics into the olfactory epithelium; they also allow us to formulate practical recommendations on intranasal drugs delivery.

About the Authors

A. V. Romashchenko
Institute of Cytology and Genetics SB RAS; Institute of Computational Technologies SB RAS
Russian Federation
Novosibirsk


M. B. Sharapova
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


D. V. Petrovskii
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


M. P. Moshkin
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


References

1. Bartsch W.G.K.G., Sponer G., Dietmann K., Fuchs G. Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-me-thylpyrrolidone, polyethylene glycol 400, 1, 2-propanediol and Tween 20. Arzneimittel-Forschung. 1975;26(8):1581-1583.

2. Bhatnagar K.P., Kennedy R.C., Baron G., Greenberg R.A. Number of mitral cells and the bulb volume in the aging human olfactory bulb: A quantitative morphological study. Anatomical Record. 1987; 218(1):73-87.

3. Calderón-Garcidueñas L., Franco-Lira M., Mora-Tiscareño A., Medina-Cortina H., Torres-Jardón R., Kavanaugh M. Early Alzheimer’s and Parkinson’s disease pathology in urban children: Friend versus Foe responses – it is time to face the evidence. BioMed Res. International. 2013;2013:161687.

4. Chattopadhyay S., Dash S.K., Tripathy S., Das B., Mandal D., Pramanik P., Roy S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem.-Biol. Interact. 2015;226: 58-71.

5. Cone R.A. Barrier properties of mucus. Advanced Drug Delivery Rev. 2009;61(2):75-85.

6. Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J., Oberdorster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspectives. 2006;114(8):1172-1178.

7. Evdokov O.V., Titov V.M., Tolochko B.P., Sharafutdinov M.R. In situ time-resolved diffractometry at SSTRC. Nucl. Instruments and Methods in Physics Res. A. 2009;603(1):194-195.

8. Faber H.K., Silverberg R.J., Dong L. Poliomyelitis in the cynomolgus monkey. J. Exp. Med. 1944;80(1):39-57.

9. Harkin A., Kelly J.P., Leonard B.E. A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin. Neurosci. Res. 2003;3(4-5):253-262.

10. Hurtt M.E., Thomas D.A., Working P.K., Monticello T.M., Morgan K.T. Degeneration and regeneration of the olfactory epithelium following inhalation exposure to methyl bromide: Pathology, cell kinetics, and olfactory function. Toxicol. Appl. Pharmacol. 1988;94(2):311-328.

11. Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M., Ali S.F., Schlager J.J. The interaction of manganese nanoparticles with PC12 cells induces dopamine depletion. Toxicol. Sciences. 2006;92(2): 456-463.

12. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010; 12(5):319-330.

13. Kitson C., Angel B., Judd D., Rothery S., Severs N., DewarA., Huang L., Wadsworth S., Cheng S., Geddes D. The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Тherapy. 1999;6(4):534-546.

14. Matulionis D.H. Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration. Am. J. Anat. 1975;142(1):67-89.

15. Mesholam R., Moberg P., Mahr R., Doty R. Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch. Neurol. 1998;55(1):84-90.

16. Mikloska Z., Sanna P.P., Cunningham A.L. Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro. J. Virol. 1999;73(7):5934-5944.

17. Minoshima S., Cross D. In vivo imaging of axonal transport using MRI: aging and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2008;35(1):89-92.

18. Mistry A., Glud S.Z., Kjems J., Randel J., Howard K.A., Stolnik S., Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J. Drug Targeting. 2009; 17(7):543-552.

19. Moshkin M., Petrovski D., Akulov A., Romashchenko A., Gerlinskaya L., Ganimedov V., Muchnaya M., Sadovsky A., Koptyug I., Savelov A. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus. Proc. R. Soc. B: Biol. Sci. 2014;281(1792):20140919.

20. Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol. 2004;16(6-7):437-445.

21. Olmsted S.S., Padgett J.L., Yudin A.I., Whaley K.J., Moench T.R., Cone R.A. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 2001;81(4):1930-1937.

22. Pautler R.G., Koretsky A.P. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. NeuroImage. 2002;16(2):441-448.

23. Royet J.P., Souchier C., Jourdan F., Ploye H. Morphometric study of the glomerular population in the mouse olfactory bulb: Numerical density and size distribution along the rostrocaudal axis. J. Comparative Neurol. 1988; 270(4): 559-568.

24. Schellinck H.M., Rooney E., Brown R.E. Odors of individuality of germfree mice are not discriminated by rats in a habituation-dishabituation procedure. Physiology & Behavior. 1995;57(5):1005-1008.

25. Sherry Chow H.H., Zhi C., Matsuura T. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J. Pharmaceut. Sci. 1999;88(8):754-758.

26. Verkman A.S., Song Y., Thiagarajah J.R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiology – Cell Physiology. 2003;284(1):C2-C15.

27. Wang J., Liu Y., Jiao F., Lao F., Li W., Gu Y., Li Y., Ge C., Zhou G., Li B., Zhao Y., Chai Z., Chen C. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology. 2008;254(1-2):82-90.

28. Wu J., Wang C., Sun J., Xue Y. Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476-4489.

29. Xia S., Xu S. Improved assay of coenzyme Q10 from liposomes by Tween 80 solubilisation and UV spectrophotometry. J. Sci. Food Agr. 2006;86(13):2119-2127.

30. Yu L.E., Lanry Yung L.Y., Ong C.N., Tan Y.L., Suresh Balasubramaniam K., Hartono D., Shui G., Wenk M.R., Ong W.Y. Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology. 2007;1(3):235-242.


Review

Views: 2174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)