Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MAPPING OF QTLS DETERMINING THE EXPRESSION OF AGRONOMICALLY AND ECONOMICALLY VALUABLE FEATURES IN SPRING WHEAT (TRITICUM AESTIVUM L.) GROWN IN ENVIRONMENTALLY DIFFERENT RUSSIA REGIONS

Abstract

For the first time a set of 110 recombinant inbred lines of a spring wheat mapping population was evaluated in different ecogeographical regions of Russia. Thirty-nine economically important traits that manifest themselves at different stages of growth have been examined in each ecogeographical locality under study for five years. A total of 186 quantitative trait loci (QTL) with LOD scores above 2,5 were identified. We have determined 97 QTLs with LOD scores exceeding 3,0. QTLs for traits studied, mapped on 21 chromosomes, manifested themselves under contrasting environmental conditions with varying degrees of reliability. It has been shown that manifestation of identified QTLs can depend or not depend on the environment, but the evaluated quantitative traits interact and correlate with each other. Relationships of identified homologous and homoeologous QTLs with known major genes or QTLs responsible for the manifestation of the studied traits in wheat or other Triticeae genera are discussed. The identified QTLs may be of interest for further experiments on the genetic control of the corresponding agriculturally valuable traits and for marker assisted selection in wheat breeding.

About the Authors

Yu. V. Chesnokov
N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
Russian Federation


N. V. Pochepnya
N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
Russian Federation


L. V. Kozlenko
N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
Russian Federation


M. N. Sitnikov
N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
Russian Federation


O. P. Mitrofanova
N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
Russian Federation


V. V. Syukov
Tulaikov Samara Research Scientifi c Institute of Agriculture, Bezenchuk, Russia
Russian Federation


D. V. Kochetkov
Tulaikov Samara Research Scientifi c Institute of Agriculture, Bezenchuk, Russia
Russian Federation


U. Lovasser
Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
Germany


A. Börner
Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
Germany


References

1. Драгавцев В.А. К проблеме генетического анализа полигенных количественных признаков растений. СПб.: ВИР, 2003. 35 с.

2. Жученко А.А. Адаптивный потенциал культурных растений: эколого-генетические основы. Кишинев: Штиинца, 1988.

3. Жученко А.А. Адаптивное растениеводство (эколого-генетические основы). Кишинев: Штиинца, 1990. 432 с.

4. Жученко А.А. Адаптивное растениеводство (эколого-генетические основы). Теория и практика. В 3 т. М.: Изд-во «Агрорус», 2008. 2880 с.

5. Жученко А.А., Король А.Б. Рекомбинация в эволюции и селекции. М.: Наука, 1985. 400 с.

6. Кочерина Н.В., Артемьева А.М., Чесноков Ю.В. Использование лод-оценки в картировании локусов количественных признаков у растений // Докл. Россельхозакадемии. 2011. № 3. C. 14–17.

7. Крупнов В.А., Воронина С.А., Крупнова О.В. Эффекты 7DL-7AG- и 1BL-1RS-транслокаций на урожайность и качество зерна мягкой пшеницы в Поволжье // Информ. вестник ВОГиС. 2009. Т. 13. № 4. C. 751–758.

8. Мережко А.Ф. Генетический анализ количественных признаков для решения задач селекции растений // Генетика. 1994. Т. 30. № 10. C. 1317–1325.

9. Панин В.М., Нецветаев В.П. Генетический контроль глиадинов и некоторые морфологические признаки колоса у твердой озимой пшеницы // Науч.-тех. бюл. ВСГИ. Одесса, 1986. Т. 2. C. 31–36.

10. Пшеничникова Т.А., Ермакова М.Ф., Чистякова А.К. и др. Молекулярное картирование локусов, связанных с показателями качества зерна мягкой пшеницы // С.-х. биология. 2006. № 5. C. 41–47.

11. Пшеничникова Т.А., Ермакова М.Ф., Чистякова А.К. и др. Картирование локусов количественных признаков (QTL), ассоциированных с показателями качества зерна мягкой пшеницы, выращенной в различных условиях среды // Генетика. 2008. Т. 44. C. 90–101.

12. Филатенко А.А., Шитова И.П. Широкий унифицированный классификатор СЭВ рода Triticum L. Л.: ВИР, 1989. 44 с.

13. Чесноков Ю.В., Почепня Н.В., Бёрнер А. и др. Эколого-генетическая организация количественных признаков растений и картирование локусов, определяющих агрономически важные признаки у мягкой пшеницы // Докл. АН. 2008. Т. 418. С. 693–696.

14. Allard R.W., Bradshaw A.D. Implications of genotype-environment interactions in applied plant breeding // Crop Sci. 1964. V. 4. P. 503–508.

15. Araki E., Miura H., Sawada S. Identifi cation of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat // Theor. Appl. Genet. 1999. V. 98. P. 977–984.

16. Ben Amer I.M., Korzun V., Worland A.J., Börner A. Genetic mapping of QTLs controlling tissue culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers // Theor. Appl. Genet. 1997. V. 94. P. 1047–1052.

17. Bezant J., Laurie D., Pratchett N. et al. Mapping QTLs controlling yield and yield components in spring barley (Hordeum vulgare L.) cross using marker regression // Mol. Breed. 1997. V. 3. P. 29–38.

18. Börner A. Gene and genome mapping in cereals // Cell. Mol. Biol. Lett. 2002. V. 7. P. 423–429.

19. Börner A., Korzun V., Voylokov A.V., Weber W.E. Detection of quantitative trait loci on chromosome 5R of rye (Secale cerelale L.) // Theor. Appl. Genet. 1999. V. 98. P. 1087–1090.

20. Börner A., Korzun V., Voylokov A.V. et al. Genetic mapping of quantitative trait loci in rye (Secale cereale L.) // Euphytica. 2000. V.116. P. 203–209.

21. Börner A., Plaschke J., Korzun V., Worland A.J. The relationships between dwarfi ng genes of wheat and rye // Euphytica. 1996. V. 89. P. 69–75.

22. Börner A., Schumann E., Fürste A. et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2002. V. 105. P. 921–936.

23. Börner A., Worland A.J., Plaschke J. et al. Pleiotropic effects of genes for reduced height (Rht) and day length intensivity (Ppd1) on yield and its components for wheat grown in middle Europe // Plant Breed. 1993. V. 111. P. 204–216.

24. Cadalen T., Soudrille P., Charmet G. et al. Molecular markers linked to genes affecting plant height in wheat using a double-haploid population // Theor. Appl. Genet. 1998. V. 96. P. 933–940.

25. Faris J.D., Anderson J.A., Francl L.J., Jordahl J.C. RFLP mapping of tan spot resistance genes in wheat // Proc. 5th, 6th Public Workshop Int. Triticeae Mapping Initiative, Genetic Resources Conservation Program, Division of Agriculture and Natural Resources / Eds P.E. McGuire, C.O. Qualset. University of California, 1996. P. 179.

26. Galiba G., Quariie S.A., Sutka J. et al. RFLP mapping of the vernalisation (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat // Theor. Appl. Genet. 1995. V. 90. P. 1174–1179.

27. Ganal M.W., Rцder M.S. Microsattelite and SNP markers in wheat breeding // Genomics Assisted Crop Improvement: Genomics Applications in Crops / Eds R.K. Varshney, R. Tuberosa. Springer, 2007. V. 2. P. 1–24.

28. Gerber S., Rodolphe F. Estimation and test for linkage between markers: a comparison of lod score and χ2 test in a linkage study of maritime pine (Pinus pinaster Ait.) // Theor. Appl. Genet. 1994. V. 88. P. 293–297.

29. Goncharov N.P. Genetic resources of wheat related species: The Vrn genes controlling growth habit (spring vs. winter) // Euphytica. 1998. V. 100. P. 371–376.

30. Haldane J.B.S. The recombination of linkage values and the calculation of distance between the loci of linkage factors // J. Genet. 1919. V. 8. P. 299–309.

31. Hayes P.M., Blake T., Chen T.H.H. et al. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness // Genome. 1993. V. 36. P. 66–71.

32. Iwaki K., Haruna S., Niwa T., Kato K. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype // Plant Breed. 2001. V. 120. P. 107–114.

33. Khlestkina E.K., Pestsova E.G., Röder M.S., Börner A. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2002. V. 104. P. 632–637.

34. Korzun V., Röder M.S., Worland A.J., Börner A. Mapping of the dwarfi ng (Rth12) and vernalization response (Vrn1) genes in wheat by using RFLP and microsatellite markers // Plant Breed. 1997. V. 116. P. 227–232.

35. Kosambi D.D. The estimation of map distances from recombination values // Ann. Eugen. 1944. V. 12. P. 172–175.

36. Koval S.F. Genetic analysis of isogenic lines of spring wheat variety Novosibirskaya 67. I. Location of the gene determining the brown colour of the glume in chromosome 1D // Genetica. 1994. V. 30. P. 569–570.

37. Lander E.S., Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps // Genetics. 1989. V. 129. P. 185–199.

38. Lander E.S., Green P., Abrahamson J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations // Genomics. 1987. V. 1. P. 174–181.

39. Mano Y., Takahashi H., Sato K., Takeda K. Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.) // Breed. Sci. 1996. V. 46. P. 137–142.

40. Marino C.L., Nelson J.C., Lu Y.H. et al. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.) // Genome. 1996. V. 39. P. 359–366.

41. McIntosh R.A. Catalogue of gene symbols for wheat / R.A. McIntosh, Y. Yamazaki, J. Dubcovsky et al. // Proc. 11th Intern. Wheat Genet. Symp. Brisbane, Qld, Australia, 2008. V. 4.

42. McIntosh R.A. Catalogue of gene symbols for wheat. 2010 supplement / R.A. McIntosh, Y. Yamazaki, J. Dubcovsky et al. // Annu. Wheat Newslett. 2010. V. 56. P. 273–282.

43. Morton N.E. Sequential test for the detection of linkage // Am. J. Hum. Genet. 1955. V. 7. P. 277–318.

44. Nelson J.C., Singh R.P., Autrique J.E., Sorrels M.E. Mapping genes conferring and suppressing leaf rust resistance in wheat // Crop Sci. 1997. V. 38. P. 231–236.

45. Nelson J.C., Sorrels M.E., Van Denze A.E. et al. Molecular mapping in wheat: Major genes and rearrangements in homoelogous groups 4, 5 and 7 // Genetics. 1995c. V. 141. P. 721–731.

46. Nelson J.C., Van Deynze A.E., Autrique E. et al. Molecular mapping of wheat. Homoeologous group 2 // Genome. 1995a. V. 38. P. 516–524.

47. Nelson J.C., Van Deynze A.E., Autrique E. et al. Molecular mapping of wheat. Homoeologous group 3 // Genome. 1995b. V. 38. P. 525–533.

48. Nelson J.C. QGENE: software for mapping – based genomic analysis and breeding // Mol. Bred. 1997. V. 3. P. 239–245.

49. Paterson A.H., Lander E.S., Hewitt J.D. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms // Nature. 1988. V. 335. P. 721–726.

50. Pestsova E., Ganal M.W., Röder M.S. Isolation and mapping of microsatellite markers specifi c for the D genome of bread wheat // Genome. 2000. V. 43. P. 689–697.

51. Röder M.S., Korzun V., Wendehake K. et al. A microsatellite map of wheat // Genetics. 1998. V. 149. P. 2007–2023.

52. Singh R.P., Nelson J.C., Sorrels M.E. Mapping Yr28 and other genes for resistance to stripe rust in wheat // Crop Sci. 2000. V. 40. P. 1148–1155.

53. Tanksley S.D. Mapping polygenes // Annu. Rev. Genet. 1993. V. 27. P. 205–233.

54. Thomas W.T.B. Prospects for molecular breeding of barley // Ann. Appl. Biol. 2003. V. 142. P. 1–12.

55. Tosa Y., Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus // Genome. 1990. V. 33. P. 225–230.

56. Van Beem J., Mohler V., Lukman R. et al. Analysis of genetic factors infl uencing the developmental rate of globally important CIMMYT wheat cultivars // Crop Sci. 2005. V. 45. P. 2113–2119.

57. Van Deynze A.E., DubcovskyJ., Gill K.S. et al. Moleculargenetic maps for group I chromosomes of Tritiaceae species and their relation to chromosomes in rice and oat // Genome. 1995. V. 38. P. 45–59.

58. Zhang X.K., Xiao Y.G., Zhang Y. et al. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit // Crop Sci. 2008. V. 48. P. 458–470.


Review

Views: 1064


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)