Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Candidate antirheumatic genotherapeutic plasmid constructions have low immunogenicity

https://doi.org/10.18699/VJ17.249

Abstract

Rheumatoid arthritis (RA) is a serious systemic disease of connective tissue, mainly affecting joints but also with different extra-articular manifestations. In the course of RA the degenerative changes occur in cartilage surfaces of affected joints and also in subchondral bone tissue, joints get deformed and lose their mobility. RA affects about 1 % of the global human population. Biological therapy with recombinant protein inhibitors of inflammatory cytokines is an effective and well-accepted treatment of RA. TNF inhibitors such as recombinant receptors or monoclonal antibodies are the most widely used biotherapeutics in clinical practice. However, this treatment has some serious side effects. The patients treated with TNF inhibitors are more susceptible to infection diseases, they are also at higher risk of developing neoplastic or autoimmune disorders. Biotherapeutics become less effective or even lose their efficiency with evoking specific antidrug antibodies. These drawbacks are in general associated with repeated systemic injections of large amounts of recombinant protein required to achieve the therapeutic efficacy. Genetic therapy might provide a good and effective solution. Viral genes coding for immunomodulatory factors could be used to create new gene therapy products to treat RA and other human disease. Poxviruses, as compared to other viral families, have an unprecedentedly rich set of such immunomodulatory genes. In particular, they have genes encoding TNF-binding proteins. Previously in a variety of laboratory models we have shown that recombinant TNF-binding protein CrmB can effectively block TNF. In this work we demonstrated that candidate antirheumatic genotherapeutic plasmid constructions encoding poxviral TNF-binding proteins have low immunogenicity.

About the Authors

T. S. Nepomnyashchikh
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


T. V. Tregubchak
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


S. N. Yakubitskiy
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


O. S. Taranov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


R. A. Maksyutov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


S. N. Shchelkunov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


References

1. Bandara G., Mueller G.M., Galea-Lauri J., Tindal M.H., Georgescu H.I., Suchanek M.K., Hung G.L., Glorioso J.C., Robbins P.D., Evans C.H. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc. Natl. Acad. Sci. USA. 1993;90(22):10764-10768.

2. Bendtzen K., Bliddal H., Stoltenberg M., Szkudlarek M., Fana V., Lindegaard H.M., Omerovic E., Højgaard P., Jensen E.K., Bouchelouche P.N. Antibodies to infliximab and adalimumab in patients with rheumatoid arthritis in clinical remission: a cross-sectional study. Arthritis. 2015;2015:784825. DOI 10.1155/2015/784825.

3. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248-254.

4. Brasington J.R., Kahl L., Ranganathan P., Cheng T.P., Atkinson J. Immunologic rheumatic disorders. J. Allergy Clin. Immunol. 2010; 125(Suppl. 2):204-215. http://dx.doi.org/10.1016/j.jaci.2009.10.067.

5. Casadevall N., Nataf J., Viron B., Kolta A., Kiladjian J.J., MartinDupont P., Michaud P., Papo T., Ugo V., Teyssandier I., Varet B., Mayeux P. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin N. Engl. J. Med. 2002;346(7):469-475. DOI 10.1056/NEJMoa011931.

6. Chen Y.M., Tsai W.C., Tseng J.C., Chen Y.H., Hsieh C.W., Hung W.T., Lan J.L. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann. Rheum. Dis. 2015;74(3):e16. DOI 10.1136/annrheumdis-2013-203893.

7. Drutskaya M.S., Efimov G.A., Zvartsev R.V., Chashchina A.A., Chudakov D.M., Tillib S.V., Kruglov A.A., Nedospasov S.A. Experimental models of arthritis in which pathogenesis is dependent on TNF expression. Biochemistry. (Moscow). 2014;79(12):1349-1357. DOI 10.1134/S0006297914120086.

8. Eng G.P., Bendtzen K., Bliddal H., Stoltenberg M., Szkudlarek M., Fana V., Lindegaard H.M., Omerovic E., Højgaard P., Jensen E.K., Bouchelouche P.N. Antibodies to infliximab and adalimumab in patients with rheumatoid arthritis in clinical remission: a cross-sectional study. Arthritis. 2015;2015:784825. DOI 10.1155/2015/784825.

9. Evans C.H., Ghivizzani S.C., Robbins P.D. Arthritis gene therapy and its tortuous path into the clinic. Transl. Res. 2013;161:205-216. DOI 10.1016/j.trsl.2013.01.002.

10. Evans C.H., Robbins P.D. Gene therapy of arthritis. Intern. Med. 1999; 38(3):233-239.

11. Gileva I.P., Malkova E.M., Nepomnyashchih T.S., Vinogradov I.V., Lebedev L.P., Kochneva G.V., Grazhdantseva A.A., Ryabchikova E.I., Shchelkunov S.N. Influence of variola virus TNF-binding protein on experimental LPS-induced endotoxic shock. Tsitokiny i vospalenie=Cytokines and Inflammation. 2006;5(1):44-49. (in Russian)

12. Gileva I.P., Nepomnyashchikh T.S., Antonets D.V., Lebedev L.R., Kochneva G.V., Grazhdantseva A.V., Shchelkunov S.N. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different. Biochim. Biophys. Acta. 2006; 1764:1710-1718.

13. Gileva I.P., Viazovaia E.A., Toporkova L.B., Tsyrendorzhiev D.D., Shchelkunov S.N., Orlovskaya I.A. TNF binding protein of variola virus acts as a TNF antagonist at epicutaneous application. Curr. Pharm. Biotechnol. 2015;16:72-76.

14. Gouze E., Gouze J.N., Palmer G.D., Pilapil C., Evans C.H., Ghivizzani S.C. Transgene persistence and cell turnover in the diarthrodial joint: implications for gene therapy of chronic joint diseases. Mol. Ther. 2007;15(6):1114-1120. DOI 10.1038/sj.mt.6300151.

15. Gouze J.-N., Gouze E., Palmer G.D., Liew V.S., Pascher A., Betz O.B., Thornhill T.S., Evans C.H., Grodzinsky A.J., Ghivizzani S.C. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res. Ther. 2003;5(5):R301-R309. DOI 10.1186/ar795.

16. Karampetsou M.P., Liossis S.N.C., Sfikakis P.P. TNF-antagonists beyond approved indications: stories of success and prospects for the future. QJM. 2010;103(12):917-928.

17. Kim J.M., Jeong J.G., Ho S.H., Hahn W., Park E.J., Kim S., Yu S.S., Lee Y.W., Kim S. Protection against collagen-induced arthritis by intramuscular gene therapy with an expression plasmid for the interleukin-1 receptor antagonist. Gene Ther. 2003;10(18):1543-1550.

18. Krieckaert C.L., Jamnitski A., Nurmohamed M.T., Kostense P.J., Boers M., Wolbink G. Comparison of long-term clinical outcome with etanercept treatment and adalimumab treatment of rheumatoid arthritis with respect to immunogenicity. Arthritis Rheum. 2012; 64(12):3850-3855. DOI 10.1002/art.34680.

19. Lebedev L.R., Ryazankin I.A., Sizov A.A., Ageenko V.A., OdegovA.M., Afinogenova G.N., Shchelkunov S.N. A method for purification of tumor necrosis factor antagonists and a study of some of their characteristics. Biotekhnologiya=Biotechnology. 2001;6:14-18. (in Russian)

20. Lee S.J., Chinen J., Kavanaugh A. Immunomodulator therapy: monoclonal antibodies, fusion proteins, cytokines, and immunoglobulins. J. Allergy Clin. Immunol. 2010;125(Suppl. 2):314-323. DOI 10.1016/j.jaci.2009.08.018.

21. Li J., Yang C., Xia Y., Bertino A., Glaspy J., Roberts M., Kuter D.J. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98(12):3241-3248. DOI 10.1182/blood.V98.12.3241.

22. Li S.D., Huang L. Gene therapy progress and prospects: non viral gene therapy by systemic delivery. Gene Ther. 2006;13(18):1313-1319. DOI 10.1038/sj.gt.3302838.

23. Nepomnyashchikh T.S., Antonets D.V., Shchelkunov S.N. Gene therapy of arthritis. Russ. J. Genetics. 2016;52(6):543-556. DOI 10.7868/S001667581605009X.

24. Pineda C., Castañeda Hernández G., Jacobs I.A., Alvarez D.F., Carini C. Assessing the immunogenicity of biopharmaceuticals. BioDrugs. 2016;30(3):195-206. DOI 10.1007/s40259-016-0174-5.

25. Razumov I.A., Gileva I.P., Vasil’eva M.A., Nepomniashchikh T.S., Mishina M.N., Belanov E.F., Kochneva G.V., Konovalov E.E., Shchelkunov S.N., Loktev V.B. Neutralizing monoclonal antibodies cross-react with fusion proteins encoded by 129l of the Ectromelia virus and A30l of the variola virus. Molekulyarnaya Biologiya = Molecular Biology (Moscow). 2005;39(6):1046-1054. (in Russian)

26. Sakhatskyy P., Wang S., Zhang C., Chou T.H., Kishko M., Lu S. Immunogenecity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology. 2008;371:98-107.

27. Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin. Ther. 2002;24(11):1720-1740. DOI 10.1016/S0149-2918(02)80075-3.

28. Sfikakis P.P., Tsokos G.C. Towards the next generation of anti TNF drugs. Clin. Immunol. 2011;141(3):231-235. DOI 10.1016/j.clim.2011.09.005.

29. Shankar G., Pendley C., Stein K.E. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nat. Biotechnol. 2007;25(5):555-561. DOI 10.1038/nbt1303.

30. Shchelkunov S.N. Orthopoxvirus genes that mediate disease virulence and host tropism. Adv. Virol. 2012;ID 524743. DOI 10.1155/2012/524743.

31. Shchelkunov S.N., Taranov O.S., Tregubchak T.V., Maksyutov R.A., Silkov A.N., Nesterov A.E., Sennikov S.V. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding the TNF-binding domain of variola virus CrmB protein. Doklady Akademii Nauk = Proceedings of the Russian Academy of Sciences. 2016;469(4):504-507. (in Russian)

32. Shchelkunova G.A., Shchelkunov S.N., Immunomodulating Drugs based on poxviral proteins. BioDrugs. 2016;30:9-16. DOI 10.1007/s40259-016-0158-5.

33. Tregubchak T.V., Shekhovtsov S.V., Nepomnyashchikh T.S., PeltekS.E., Kolchanov N.A., Shchelkunov S.N. TNF-binding domain of the variola virus CrmB protein synthesized in Escherichia coli cells effectively interacts with human TNF. Doklady Akademii Nauk = Proceedings of the Russian Academy of Sciences. 2015;462(1):176-180. DOI 10.1134/S1607672915030102. (in Russian)

34. Tsyrendorzhiev D.D., Orlovskaya I.A., Sennikov S.V., Tregubchak T.V., Gileva I.P., Tsyrendorzhieva M.D., Shchelkunov S.N. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein. Byulleten’ eksperimental’noy biologii i Meditsiny=Bulletin of Experimental Biology i Medicine. 2014;157(2):214-217. (in Russian)

35. Tsyrendorzhiev D.D., Sennikov S.V., Orlovskaya I.A., Gileva I.P., Ryazankin I.A., Toporkova L.B., Kurilin V.V., Lopatnikova Y.A., Grydina A.A., Shchelkunov S.N. Efficiency of recombinant TNFbinding protein from variola virus in a model of collagen-induced arthritis. Meditsinskaya immunologiya = Medical Immunology. 2013;15(6):513-524. (in Russian)

36. Venkatesha S.H., Dudics S., Acharya B., Moudgil K.D. Cytokine modulating strategies and newer cytokine targets for arthritis therapy. Int. J. Mol. Sci. 2015;16(1):887-906. DOI 10.3390/ijms16010887.

37. Vincent F.B., Morand E.F., Murphy K., Mackay F., Mariette X., Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann. Rheum. Dis. 2013;72(2):165-178. DOI 10.1136/annrheumdis-2012-202545.


Review

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)