Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Идентификация и характеристика мРНК генов рецептор-подобных киназ MhyGSO1 и MhyGSO2 в паразитическом растении Monotropa hypopitys на стадии цветения

https://doi.org/10.18699/VJ17.250

Аннотация

В процессе формирования органов растения баланс программированного деления и позиционной дифференцировки клеток поддерживается за счет межклеточного обмена сообщениями с помощью сигнальных молекул, избирательно узнаваемых рецепторами. Среди последних паралоги GASSHO1 и GASSHO2 – киназы с лейцин-богатыми повторами, участвующие в регуляции идентичности и функционирования различных клеток корня и эпидермиса. Гены GASSHO охарактеризованы главным образом в Arabidopsis thaliana. Их несомненная значимость в сочетании с консервативностью базовых процессов онтогенеза придает изучению киназ GASSHO у других видов растений, отличающихся типом питания и нетрадиционным развитием, особенную актуальность. Целью работы была идентификация генов GASSHO у представителя покрытосеменных, подъельника Monotropa hypopitys, который является бесхлорофилльным микогетеротрофом. В результате проведенного поиска среди данных секвенирования транскриптомов различных тканей (корни с адвентивными почками, прицветники и цветки) двух индивидуальных растений, находящихся на стадии позднего цветения, были идентифицированы неполные последовательности мРНК двух паралогичных генов MhyGASSHO1 (MhyGSO1) и MhyGSO2. Структурный анализ кодируемых ими неполных аминокислотных последовательностей выявил консервативные домены, характерные для рецепторных киназ с лейцин-богатыми повторами, в последовательности MhyGSO1 и N-концевой лейцин-богатый домен в последовательности MhyGSO2. Филогенетический анализ белков MhyGSO1 и MhyGSO2 подтвердил их гомологию с киназами GSO1 и GSO2 у представителей Rosids и Asterids. При этом ближайшими гомологами белков MhyGSO1 и MhyGSO2 оказались киназы GSO1 и GSO2 у представителей порядка Solanales (Asterids). Количественный анализ транскриптов MhyGSO1 и MhyGSO2 выявил экспрессию обоих генов в цветках и прицветниках, а гена MhyGSO1 – также в корнях с почками. Характер экспрессии исследуемых генов в совокупности с известными данными о генах GSO1 и GSO2 (A. thaliana) предполагает взаимодополняющую деятельность паралогов GASSHO в сигнальных путях развития подъельника, в частности в ответе на экзогенную сахарозу и в развитии репродуктивных органов и эмбриональных соцветий.

Об авторах

А. В. Щенникова
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


Е. З. Кочиева
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


А. В. Белецкий
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


М. А. Филюшин
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


О. А. Шульга
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


Н. В. Равин
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


К. Г. Скрябин
Институт биоинженерии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук
Россия
Москва


Список литературы

1. Abe M., Katsumata H., Komeda Y., Takahashi T. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development. 2003;130(4):635-643. DOI 10.1242/dev.00292.

2. Aharoni A., Dixit S., Jetter R., Thoenes E., van Arkel G., Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell. 2004;16(9):2463-2480. DOI 10.1105/tpc.104.022897.

3. Aichinger E., Kornet N., Friedrich T., Laux T. Plant stem cell niches. Annu. Rev. Plant Biol. 2012;63:615-636. DOI 10.1146/annurevarplant-042811-105555.

4. Campilho A., Garcia B., Toorn H.V., Wijk H.V., Campilho A., Scheres B. Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J. 2006;48(4):619-627. DOI 10.1111/j.1365-313X.2006.02892.x.

5. De Giorgi J., Piskurewicz U., Loubery S., Utz-Pugin A., Bailly C., Mène-Saffrané L., Lopez-Molina L. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015;11(12):e1005708. DOI 10.1371/journal.pgen.1005708.

6. Dodueva I.E., Tvorogova V.E., Azarakhsh М., Lebedeva M.A., Lutova L.A. Plant stem cells: unity and diversity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):441-458. DOI 10.18699/VJ16.172. (in Russian)

7. Drisch R.C., Stahl Y. Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. Front. Plant Sci. 2015;6:505. DOI 10.3389/fpls.2015.00505.

8. Fiume E., Guyon V., Remoué C., Magnani E., Miquel M., Grain D., Lepiniec L. TWS1, a novel small protein, regulates various aspects of seed and plant development. Plant Physiol. 2016;172(3):1732-1745. DOI 10.1104/pp.16.00915.

9. Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., Macmanes M.D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C.N., Henschel R., Leduc R.D., Friedman N., Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protocols. 2013;8(8):1494-1512. DOI 10.1038/nprot.2013.084.

10. Hooker T.S., Lam P., Zheng H., Kunst L. A core subunit of the RNAprocessing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell. 2007;19(3):904-913. DOI 10.1105/tpc.106.049304.

11. Javelle M., Vernoud V., Rogowsky P.M., Ingram G.C. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 2011;189(1):17-39. DOI 10.1111/j.1469-8137.2010.03514.x.

12. Jinn T.L., Stone J.M., Walker J.C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 2000;14(1):108-117. DOI 10.1101/gad.14.1.108.

13. Kwak S.H., Schiefelbein J. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev. Biology. 2007;302:118-131. DOI 10.1016/j.ydbio.2006.09.009.

14. Kwak S.H., Schiefelbein J. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis. Plant Signal. Behav. 2014;9(11):e973815. DOI 10.4161/15592324.2014.973815.

15. Leake J.R. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994;127:171-216. DOI 10.1111/j.1469-8137.1994.tb04272.x.

16. Leake J.R., McKendrick S.L., Bidartondo M., Read D.J. Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol. 2004;163(2):405-423. DOI 10.1111/j.1469-8137.2004.01115.x.

17. Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. DOI 10.1186/1471-2105-12-323.

18. Mizuno S., Osakabe Y., Maruyama K., Ito T., Osakabe K., Sato T., Shinozaki K., Yamaguchi-Shinozaki K. Receptor-like protein kinase 2(RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J. 2007;50(5):751-766. DOI 10.1111/j.1365-313X.2007.03083.x.

19. Moussu S., San-Bento R., Galletti R., Creff A., Farcot E., Ingram G. Embryonic cuticle establishment: the great (apoplastic) divide. Plant Signal. Behav. 2013;8(12):e27491. DOI 10.4161/psb.27491.

20. Nodine M.D., Tax F.E. Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Dev. Biology. 2008;314(1):161-170. DOI 10.1016/j.ydbio.2007.11.021.

21. Ogasawara H., Kaimi R., ColasantiJ., KozakiA. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol. Biol. 2011;77(4-5):489-499. DOI 10.1007/s11103-011-9826-5.

22. Oshchepkova E.A., Omelyanchuk N.A., Savina M.S., Pasternak T., Kolchanov N.A., Zemlyanskaya E.V. Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):459-474. DOI 10.18699/VJ16.173. (in Russian)

23. Racolta A., Bryan A.C., Tax F.E. The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification. Dev. Dynamics. 2014;243(2):257-278. DOI 10.1002/dvdy.24066.

24. Ravin N.V., Gruzdev E.V., Beletsky A.V., Mazur A.M., Prokhortchouk E.B., Filyushin M.A., Kochieva E.Z., Kadnikov V.V., Mardanov A.V., Skryabin K.G. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys. BMC Plant Biol. 2016;16(Suppl. 3):238. DOI 10.1186/s12870-016-0929-7.

25. San-Bento R., Farcot E., Galletti R., Creff A., Ingram G. Epidermal identity is maintained by cell-cell communication via a universally active feedback loop in Arabidopsis thaliana. Plant J. 2014;77(1):46-58. DOI 10.1111/tpj.12360.

26. Schoof H., Lenhard M., Haecker A., Mayer K.F., Jürgens G., LauxT. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635-644. DOI 10.1016/S0092-8674(00)80700-X.

27. Shiu S.H., Bleecker A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132(2):530-543. DOI 10.1104/pp.103.021964.

28. Song S.K., Ryu K.H., Kang Y.H., Song J.H., Cho Y.H., Yoo S.D., Schiefelbein J., Lee M.M. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE. Plant Physiol. 2011;157(3):1196-1208. DOI 10.1104/pp.111.185785.

29. Stahl Y., Grabowski S., Bleckmann A., Kühnemuth R., WeidtkampPeters S., Pinto K.G., Kirschner G.K., Schmid J.B., Wink R.H. Hülsewede A., Felekyan S., Seidel C.A., Simon R. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 2013;23(5):362-371. DOI 10.1016/j.cub.2013.01.045.

30. Takayama S., Sakagami Y. Peptide signalling in plants. Curr. Opin. Plant Biol. 2002;5(5):382-387. DOI 10.1016/S1369-5266(02)00284-4.

31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30(12):2725-2729. DOI 10.1093/molbev/mst197.

32. Torii K.U., Mitsukawa N., Oosumi T., Matsuura Y., Yokoyama R., Whittier R.F., Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 1996;8(4):735-746. DOI 10.1105/tpc.8.4.735.

33. Tsuwamoto R., Fukuoka H., Takahata Y. GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J. 2008;54(1):30-42. DOI 10.1111/j.1365-313X.2007.03395.x.

34. Wallace G.D. Studies of the Monotropoidiae (Ericaceae): taxonomy and distribution. Wassman J. Biology. 1975;33:1-88.

35. Wildwater M., Campilho A., Perez-Perez J.M., Heidstra R., Blilou I., Korthout H., Chatterjee J., Mariconti L., Gruissem W., Scheres B. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell. 2005;123(7):1337-1349. DOI 10.1016/j.cell.2005.09.042.

36. Yokoyama R., Takahashi T., Kato A., Torii K.U., Komeda Y. The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. Plant J. 1998;15(3):301-310. DOI 10.1046/j.1365-313X.1998.00203.x.

37. Zuckerkandl E., Pauling L. Evolutionary Divergence and Convergence in Proteins: Symp. held at the Inst. of Microbiology of Rutgers. N. Y.: Acad. Press, 1965;97-166.


Рецензия

Просмотров: 590


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)