РОЛЬ КОРОТКИХ РНК В УСТОЙЧИВОСТИ РАСТЕНИЙ К БИОТИЧЕСКИМ И АБИОТИЧЕСКИМ СТРЕССАМ

Полный текст:


Аннотация

Малые некодирующие РНК являются отдельным классом РНК, регулирующим множество физиологических процессов в растениях. В статье приведены литературные данные об образовании коротких РНК (siРНК и miРНК), обсуждается их роль в защите растений от биотических и абиотических стрессов, а также кратко рассматриваются методические приемы, позволяющие использовать данный класс РНК в качестве агентов для управления устойчивостью растений.


Об авторах

В. И. Малиновский
Федеральное государственное бюджетное учреждение науки Биолого-почвенный институт Дальневосточного отделения Российской академии наук, Владивосток, Россия
Россия


Г. Б. Боровский
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия
Россия


Е. Л. Горбылева
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия Национальный исследовательский Иркутский государственный технический университет, Иркутск, Россия
Россия


И. В. Федосеева
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия Национальный исследовательский Иркутский государственный технический университет, Иркутск, Россия
Россия


Е. Л. Таусон
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия
Россия


В. А. Соколов
Федеральное государственное бюджетное учреждение науки Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук, Новосибирск, Россия
Россия


В. К. Войников
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия
Россия


Список литературы

1. Дорохов Ю.Л. «Умолкание» генов у растений // Молекуляр. биология. 2007. Т. 41. № 4. С. 579–592.

2. Жимулев И.Ф., Беляева Е.С., Колесникова Т.Д., Волкова Е.И. Интеркалярный гетерохроматин и проблема сайленсинга // Информ. вестник ВОГиС. 2004. Т. 8. № 2. С. 81–85.

3. Маренкова Т.В., Дейнеко Е.В. Инактивирование генов у растений на уровне транскрипции // Генетика. 2010. Т. 46. № 5. С. 581–592.

4. Рукавцова Е.Б., Алексеева В.В., Бурьянов Я.И. Применение РНК интерференции в метаболической инженерии растений // Биоорган. химия. 2010. Т. 36. № 2. С. 159–169.

5. An C., Sawada A., Fukusaki E., Kobayashi A. A transient RNA interference assay system using Arabidopsis protoplasts // Biosci. Biotechnol. Biochem. 2003. V. 67. P. 2674–2677.

6. Anandalakshmi R., Pruss G.J., Ge X. et al. A viral suppressor of gene silencing in plants // Proc. Natl Acad. Sci. USA. 1998. V. 95. No. 22. P. 13079–13084.

7. Arif M., Azhar U., Arshad M. et al. Engineering broad-spectrum resistance against RNA viruses in potato // Transgenic Res. 2012. V. 21. No. 2. P. 303–311.

8. Bart R., Chern M., Park C.-J. et al. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts // Plant Methods. 2006. V. 2. P. 13–21.

9. Bayne E.H., Rakitina D.V., Morozov S.Y., Baulcombe D.C. Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing // Plant J. 2005. V. 44. No. 3. P. 471–482.

10. Bernstein E., Caudy A.A., Hammond S.M., Hannon G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference // Nature. 2001. V. 409. No. 6818. P. 363–366.

11. Bollman K.M., Aukerman M.J., Park M.Y. et al. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis // Development. 2003. V. 130. No. 8. P. 1493–1504.

12. Chen S., Hofi us D., Sonnewald U., Börnke F. Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA // Plant J. 2003. V. 36. No. 5. P. 731–740.

13. Contreras-Cubas C., Palomar M., Reyes J.L., Covarrubias A. Non-coding RNAs in the plant response to abiotic stress // Planta. 2012. V. 236. P. 943–958.

14. Craft J., Samalova M., Baroux C. et al. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis // Plant J. 2005. V. 41. Р. 899–918.

15. Earley K.W., Haag J.R., Pontes O. et al. Gateway-compatible vectors for plant functional genomics and proteomics // Plant J. 2006. V. 45. P. 616–629.

16. English J.J., Mueller E., Baulcombe D.C. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes // Plant Cell. 1996. V. 8. No. 2. P. 179–188.

17. Fagard M., Vaucheret H. Systemic silencing signal(s) // Plant Mol. Biol. 2000. V. 43. No. 2/3. P. 285–293.

18. Guleria P., Mahajan M., Bhardwaj J., Yadav S.K. Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses // Genomics, Proteomics and Bioinformatics. 2011. V. 9. I. 6. P. 183–199.

19. Hamilton A.J., Baulcombe D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants // Science. 1999. V. 286. No. 5441. P. 950–952.

20. Haywood V., Yu T.S., Huang N.C., Lucas W.J. Phloem longdistance traffi cking of gibberellic acid-insensitive RNA regulates leaf development // Plant J. 2005. V. 42. No. 1. P. 49–68.

21. Helliwell C., Waterhouse P. Constructs and methods for high throughput gene silencing in plants // Methods. 2003. V. 30. P. 289–295.

22. Helliwell C.A., Waterhouse P.M. Constructs and methods for hairpin RNA-mediated gene silencing in plants // Methods Enzymol. 2005. V. 392. P. 24–35.

23. Himber C., Dunoyer P., Moissiard G. et al. Transitivitydependent and independent cell-to-cell movement

24. of RNA silencing // EMBO J. 2003. V. 22. No. 17. P. 4523–4533.

25. Hirai S., Kodama H. RNAi vectors for manipulation of gene expression in higher plants // Open Plant Sci. J. 2008. V. 2. P. 21–30.

26. Hirai S., Oka S., Adachi E., Kodama H. The effects of spacer sequence son silencing effi ciency of plant RNAi vectors // Plant Cell Rep. 2007. V. 26. P. 651–659.

27. Ji L., Chen X. Regulation of small RNA stability: methylation and beyond // Cell Res. 2012. V. 22. P. 624–636.

28. Johansen L.K., Carrington J.C. Silencing on the Spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system // Plant Physiol. 2001. V. 126. No. 3. P. 930–938.

29. Karimi M., Depicker A., Hilson P. Recombinational cloning with plant gateway vectors // Plant Physiol. 2007. V. 145. P. 1144–1154.

30. Kasschau K.D., Carrington J.C. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HCPro // Virology. 2001. V. 285. No. 1. P. 71–81.

31. Khraiwesh B., Zhu J-K., Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants // BBA. 2012. V. 1819. P. 137–148.

32. Kurihara Y., Takashi Y., Watanabe Y. The interaction between DCL1 and HYL1 is important for effi cient and precise processing of pri-miRNA in plant microRNA biogenesis // RNA. 2006. V.12. No. 2. P. 206–212.

33. Kurihara Y., Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions // Proc. Natl Acad. Sci. USA. 2004. V. 101. No. 34. P. 12753–12758.

34. Lindbo J.A., Silva-Rosales L., Proebsting W.M., Dougherty W.G. Induction of a highly specifi c antiviral state in transgenic plants: implication for regulation of gene expression and virus resistance // Plant Cell. 1993. V. 5. No. 12. P. 1749–1759.

35. Mallory A.C., Mlotshwa S., Bowman L.H., Vance V.B. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus // Plant J. 2003. V. 35. No. 1. P. 82–92.

36. Masclaux F.G., Charpenteau M., Takahashi T. et al. Gene silencing using a heat-inducible RNAi system in Arabidopsis // Biochem. Biophys. Res. Comun. 2004. V. 321. P. 364–369.

37. Matzke M., Aufsatz W., Kanno T. et al. Genetic analysis of RNA-mediated transcriptional gene silencing // Biochim. Biophys. Acta. 2004. V. 1677. No. 1/3. P. 129–141.

38. Melnyk C.W., Molnar A., Baulcombe D.C. Intercellular and systemic movement of RNA silencing signals // EMBO J. 2011. V. 30. No. 17. P. 3553–3563.

39. Mette M.F., Aufsatz W., van der Winden J. et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA // EMBO J. 2000. V. 19. No. 19. P. 5194–5201.

40. Miki D., Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice // Plant Cell Physiol. 2004. V. 45. P. 490–495.

41. Mlotshwa S., Voinnet O., Mette M.F. et al. RNA silencing and the mobile silencing signal // Plant Cell. 2002. V. 14. Suppl: S289–S301.

42. Nakahara K.S., Masuta C., Yamada S. et al. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors // Proc. Natl Acad. Sci. USA. 2012. V. 109. No. 25. P. 10113–10118.

43. Omarov R.T., Scholthof H.B. Biological chemistry of virusencoded suppressors of RNA silencing: an overview // Methods Mol. Biol. 2012. No. 894. P. 39–56.

44. Ratcliff F.G., MacFarlane S.A., Baulcombe D.C. Gene silencing without DNA: RNA-mediated cross-protection between viruses // Plant Cell. 1999. V. 11. No. 7. P. 1207–1216.

45. RNA Interference: Methods for Plants and Animals / Ed. T. Doran, C. Helliwell. CABI, 2009. 257 p.

46. Ryabov E.V., van Wezel R., Walsh J., Hong Y. Cell-to-cell, but not long-distance, spread of RNA silencing that is induced in individual epidermal cells // J. Virol. 2004. V. 78. No. 6. P. 3149–3154.

47. Schott G., Mari-Ordonez A., Himber C. et al. Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1 // EMBO J. 2012. V. 31. No. 11. P. 2553–2565.

48. Schwab R., Ossowski S., Riester M. et al. Highly specific gene silencing by artificial micro RNAs in Arabidopsis // Plant Cell. 2006. V. 18. P. 1121–1133.

49. Schwach F., Vaistij F.E., Jones L., Baulcombe D.C. An RNADependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal // Plant Physiol. 2005. V. 138. No. 4. P. 1842–1852.

50. Shams-Bakhsh M., Canto T., Palukaitis P. Enhanced resistance and neutralization of defense responses by suppressors of RNA silencing // Virus Res. 2007. V. 130. No. 1/2. P. 103–109.

51. Shen W.J., Ruan X.L., Li X.S. et al. RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice // Arch. Virol. 2012. V. 157. No. 8. P. 1531–1539.

52. Shivaprasad P.V., Chen H.M., Patel K. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs // Plant Cell. 2012. V. 24. No. 3. P. 859–874.

53. Sonoda S., Nishiguchi M. Graft transmission of post-transcriptional gene silencing: target specifi city for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants // Plant J. 2000. V. 21. No. 1. P. 1–8.

54. Sunkar R., Zhu J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis // Plant Cell. 2004. V. 16. P. 2001–2019.

55. Tournier B., Tabler M., Kalantidis K. Phloem fl ow strongly infl uences the systemic spread of silencing in GFP Nicotiana benthamiana plants // Plant J. 2006. V. 47. No. 3. P. 383–394.

56. Ueki S., Citovsky V. RNA commutes to work: Regulation of plant gene expression by systemically transported RNA molecules // BioEssays. 2001. V. 23. No. 12. P. 1087–1090.

57. Vanitharani R., Chellappan P., Fauquet C.M. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells // Proc. Natl Acad. Sci. USA. 2003. V. 100. No. 2. P. 169632–169636.

58. Vaucheret H., Vazquez F., Crete P., Bartel D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathways are crucial for plant development // Genes Dev. 2004. V. 18. P. 1187–1197.

59. Voinnet O., Baulcombe D.C. Systemic signaling in gene silencing // Nature. 1997. V. 389. No. 6651. P. 553.

60. Wassenegger M., Heimes S., Riedel L., Sanger H.L. RNAdirected de novo methylation of genomic sequences in plants // Cell. 1994. V. 76. No. 3. P. 567–576.

61. Wesley S.V., Helliwell C.A., Smith N.A. et al. Construct design for effi cient, effective and high-thoughput gene silencing in plants // Plant J. 2001. V. 27. P. 581–590.

62. Wielopolska A., Townley H., Moore I. et al. A high-throughput inducible RNAi vector for plants // Plant Biotechnol. J. 2005. V. 3. P. 583–590.

63. Yelin M.D., Chung S.M., Frankman E.L., Tzfi ra T. pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants // Plant Physiol. 2007. V. 145. P. 1272–1281.

64. Yoo B.-C., Kragler F., Varkonyi-Gasic E. et al. A systemic small RNA signaling system in plants // Plant Cell. 2004. V. 16. No. 8. P. 1979–2000.

65. Zentella R., Yamauchi D., Ho T.D. Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells // Plant Cell. 2002. V. 14. P. 2289–2301.

66. Zilberman D., Cao X., Jacobsen S.E. ARGONAUTE4 control of locus-specifi c siRNA accumulation and DNA and histone methylation // Science. 2003. V. 299. No. 5607. P. 716–719.


Дополнительные файлы

Просмотров: 125

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)