Quaternion modeling of the helical path for analysis of the shape of the DNA molecule
https://doi.org/10.18699/VJ17.308
Abstract
The threedimensional shape of a DNA molecule is a key property influencing its functional specificity and the nature of its molecular interactions. The characteristic shape into which a DNA molecule folds under certain conditions is a manifestation of its micromechanical and structural features, which are sequencedependent. DNA shaperelated properties can there fore be determined in a predictable manner. A number of models have been designed to describe intrinsic DNA curvature, incorporating a set of helical parameters which can be applied to operative threedimensional reconstruction of the DNA structures. Alternatively, desired base pair parameters can be computed based on publicly available information about atomic DNA structures. Further, taking the base pairs as rigid bodies, their relative location in space can be estimated based on these parameters. Matrices are a common method to implement any rigid body transformations and are widely used in the modeling of DNA structures. Quaternions are the more straightforward and robust alternative for matrices. Unit quaternions can represent only a rotation, whereas dual quaternions combine rotation and translation into a single state. In the present guide, the algebra of unit and dual quaternions is applied for the first time to modeling of the DNA helical path, based on conformational parameters of the base pair steps. Although dual quaternions are preferable for modeling of DNA structure in detail, the use of unit quaternions is sufficient to predict the DNA trajectory and all calculations of DNA shape features. In order to analyze DNA shape and chain sta tistics, and predict the micromechanical properties of DNA molecules based on coordinates of the helical path, the widely used as well as original algorithms for computing DNA curvature, radius of gyration, persistence length and phasing of DNA bends are described. Taken together, these algorithms will be useful both in the in silico analysis of relatively short DNA fragments as well as in topological mapping of whole genomes.
About the Author
A. F. MuterkoRussian Federation
Novosibirsk.
References
1. Babcock M.S., Pednault E.P., Olson W.K. Nucleic acid structure analysis. Mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. J. Mol. Biol. 1994; 237(1):125-156.
2. Bednar J., Furrer P., Katritch V., Stasiak A.Z., Dubochet J., Stasiak A. Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J. Mol. Biol. 1995;254(4): 579-594.
3. Berman H., Henrick K., Nakamura H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003;10(12):980.
4. Bolshoy A., McNamara P., Harrington R.E., Trifonov E.N. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc. Natl. Acad. Sci. USA. 1991;88(6):2312-2316.
5. Chan S.S., Breslauer K.J., Austin R.H., Hogan M.E. Thermodynamics and premelting conformational changes of phased (dA)5 tracts. Biochemistry. 1993;32(44):11776-11784.
6. Chan S.S., Breslauer K.J., Hogan M.E., Kessler D.J., Austin R.H., Ojemann J., Passner J.M., Wiles N.C. Physical studies of DNA premelting equilibria in duplexes with and without homo dA.dT tracts: correlations with DNA bending. Biochemistry. 1990;29(26):6161- 6171.
7. Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K., Berman H.M. Geometric parameters in nucleic acids: Nitrogenous bases. J. Am. Chem. Soc. 1996;118(3):509-518.
8. De Santis P., Palleschi A., Savino M., Scipioni A. A theoretical model of DNA curvature. Biophys. Chem. 1988;32(2-3):305-317.
9. De Santis P., Palleschi A., Savino M., Scipioni A. Validity of the nearest-neighbor approximation in the evaluation of the electrophoretic manifestations of DNA curvature. Biochemistry. 1990;29(39): 9269-9273.
10. Dickerson R.E. Definitions and nomenclature of nucleic acid structure components. Nucleic Acids Res. 1989;17(5):1797-1803.
11. Dlakic M., Harrington R.E. Unconventional helical phasing of repetitive DNA motifs reveals their relative bending contributions. Nucleic Acids Res. 1998;26(18):4274-4279.
12. Eckdahl T.T., Anderson J.N. Computer modelling of DNA structures involved in chromosome maintenance. Nucleic Acids Res. 1987; 15(20):8531-8545.
13. Flory P. Statistical Mechanics of Chain Molecules. N.Y.: Inter-science, 1969. Gabrielian A., Pongor S. Correlation of intrinsic DNA curvature with DNA property periodicity. FEBS Lett. 1996;393(1):65-68.
14. Gelbin A., Schneider B., Clowney L., Hsieh S.H., Olson W.K., Berman H.M. Geometric parameters in nucleic acids: Sugar and phosphate constituents. J. Am. Chem. Soc. 1996;118(3):519-529.
15. Goodsell D.S., Dickerson R.E. Bending and curvature calculations in B-DNA. Nucleic Acids Res. 1994;22(24):5497-5503.
16. Hagerman P.J. Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry. 1985;24(25):7033-7037.
17. Hagerman P.J. Sequence-directed curvature of DNA. Nature. 1986;321(6068):449-450.
18. Jerkovic B., Bolton P.H. The curvature of dA tracts is temperature dependent. Biochemistry. 2000;39(40):12121-12127.
19. Jernigan R.L., Sarai A., Shapiro B., Nussinov R. Relationship between curved DNA conformations and slow gel migration. J. Biomol. Struct. Dyn. 1987;4(4):561-567.
20. Kanhere A., Bansal M. An assessment of three dinucleotide parameters to predict DNA curvature by quantitative comparison with experimental data. Nucleic Acids Res. 2003;31(10):2647-2658.
21. Koo H.S., Wu H.M., Crothers D.M. DNA bending at adenine thymine tracts. Nature. 1986;320(6062):501-506.
22. Kratky O., Porod G. Röntgenuntersuchung gelöster fadenmoleküle. Recueil des Travaux Chimiques des Pays-Bas. 1949;68:1106-1123.
23. Landau L.D., Lifshitz E.M. Statistical Physics, Course of Theoretical Physics. London, UK: Pergamon, 1958.
24. Landau L.D., Lifshitz E.M. Theory of Elasticity. Oxford, NY: Pergamon Press, 1970.
25. Lavery R., Moakher M., Maddocks J.H., Petkeviciute D., Zakrzewska K. Conformational analysis of nucleic acids revisited: curves+. Nucleic Acids Res. 2009;37(17):5917-5929.
26. Liu Y., Beveridge D.L. A refined prediction method for gel retardation of DNA oligonucleotides from dinucleotide step parameters: reconciliation of DNA bending models with crystal structure data. J. Biomol. Struct. Dyn. 2001;18(4):505-526.
27. Lu X.J., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31(17):5108-5121.
28. Masoudi-Nejad A., Movahedi S., Jáuregui R. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties. BMC Genomics. 2011; 12:214.
29. Matyašek R., Fulneček J., Kovařík A. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences. Electrophoresis. 2013;34(17):25112521.
30. McConnell K.J., Beveridge D.L. Molecular dynamics simulations of B’-DNA: sequence effects on A-tract-induced bending and flexibility. J. Mol. Biol. 2001;314:23-40.
31. Mitchell J.S., Glowacki J., Grandchamp A.E., Manning R.S., Maddocks J.H. Sequence-dependent persistence lengths of DNA. J. Chem. Theory Comput. 2017;13(4):1539-1555.
32. Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.J., Neidle S., Shakked Z., Sklenar H., Suzuki M., Tung C.S., Westhof E., Wolberger C., Berman H.M. A standard reference frame for the description of nucleic acid basepair geometry. J. Mol. Biol. 2001;313(1):229-237.
33. Olson W.K., Gorin A.A., Lu X.J., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA. 1998;95(19):11163-11168.
34. Olson W.K., Marky N.L., Jernigan R.L., Zhurkin V.B. Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J. Mol. Biol. 1993;232(2): 530-554.
35. Packer M.J., Dauncey M.P., Hunter C.A. Sequence-dependent DNA structure: tetranucleotide conformational maps. J. Mol. Biol. 2000; 295(1):85-103.
36. Parkinson G., Vojtechovsky J., Clowney L., Brünger A.T., Berman H.M. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr. Sect. D. 1996;52(1):57-64.
37. Price M.A., Tullius T.D. How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry. 1993;32(1):127-136.
38. Rawat N., Biswas P. Size, shape, and flexibility of proteins and DNA. J. Chem. Phys. 2009;131(16):165104.
39. Rivetti C., Walker C., Bustamante C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 1998;280(1):41-59.
40. Schellman J.A., Harvey S.C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys. Chem. 1995;55(1-2):95-114.
41. Shpigelman E.S., Trifonov E.N., Bolshoy A. CURVATURE: software for the analysis of curved DNA. Comput. Appl. Biosci. 1993;9(4): 435-440.
42. Stefl R., Wu H., Ravindranathan S., Sklenár V., Feigon J. DNA A-tract bending in three dimensions: solving the dA4T4 vs dT4A4 conundrum. Proc. Natl. Acad. Sci. USA. 2004;101(5):1177-1182.
43. Tan R.K., Harvey S.C. A comparison of six DNA bending models. J. Biomol. Struct. Dyn. 1987;5(3):497-512.
44. Trifonov E.N., Tan R.K.Z., Harvey S.C. Static persistence length of DNA. In: W.K. Olson, M.H. Sarma, R.H. Sarma, M. Sundaralingam (Eds.). DNA Bending and Curvature. N.Y.: Adenine Press, 1988; 243-253.
45. Trifonov E.N., Ulanovsky L.E. Inherently curved DNA and its structural elements. In: R.D. Wells, S.C. Harvey (Eds.). Unusual DNA Structures. Berlin, Germany: Springer-Verlag, 1987;173-187.
46. Tung C.S., Burks C. A quantitative measure of DNA curvature enabling the comparison of predicted structures. J. Biomol. Struct. Dyn. 1987; 4(4):553-559.
47. Vermeulen A., Zhou H., Pardi A. Determination DNA global structure and DNA bending by application of NMR residual dipolar coupling. J. Am. Chem. Soc. 2000;122:9638-9647.
48. Vologodskaia M., Vologodskii A. Contribution of the intrinsic curvature to measured DNA persistence length. J. Mol. Biol. 2002;317(2):205213.
49. Wu H.M., Crothers D.M. The locus of sequence-directed and proteininduced DNA bending. Nature. 1984;308(5959):509-513.