Анализ циркадного ритма биологических процессов в печени и почках мыши


https://doi.org/10.18699/VJ17.311

Полный текст:


Аннотация

В статье представлены результаты исследования тканеспецифичности циркадных фазовых характеристик биологических процессов в печени и почках мыши. Основываясь на экспериментальных данных по суточной динамике уровня трансляции генов мыши из базы данных GEO (GSE67305 и GSE81283), полученных методом профилирования рибосом в печени и почках, мы провели сравнительный анализ транслятомов в этих двух органах. Были выявлены гены, демонстрирующие выраженную суточную динамику трансляции (3 358 генов в печени и 2 938 в почках). Далее для двенадцати временных точек (ZT0–ZT22) в каждой ткани (печень, почки) были выделены группы генов, находящиеся в фазе с повышенным уровнем трансляции. В работе было принято, что ген находится в фазе с повышенным уровнем трансляции, если в данной временной точке его показатель профилирования рибосом для обеих реплик превышал среднесуточное значение показателя для этого гена. Наибольшее количество ритмичных генов в печени имеет повышенный уровень трансляции в начале темной фазы суток, соответствующей повышенной активности животных. В почках различия в распределении по времени суток числа генов, находящихся в фазе повышенного уровня трансляции, были менее выражены, а максимальное число таких генов наблюдалось с середины светлой фазы суток до середины темной. Был проведен анализ обогащения терминами GO категории Biological Process этих двенадцати групп генов в печени и почках. Среди процессов, ритмичность которых характерна как для печени, так и для почек, выявлены процессы, циркадные фазовые характеристики которых в этих тканях совпадают, и процессы, имеющие существенно различные временные фазовые паттерны. Также выявлены процессы со строгой тканеспецифичностью ритмической трансляции. Подход, использованный в нашей работе, позволяет проводить анализ органо/тканеспеспецифичности фазовых характеристик биологических процессов, а полученные результаты подчеркивают необходимость учитывать фазовые циркадные характеристики при сравнении особенностей протекания биологических процессов в различных органах.

Об авторах

Н. А. Подколодный
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Н. Н. Твердохлеб
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет.
Россия
Новосибирск.


О. А. Подколодная
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Список литературы

1. Atger F., Gobet C., Marquis J., Martin E., Wang J., Weger B., Lefebvre G., Descombes P., Naef F., Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl. Acad. Sci. USA. 2015;112(47):E6579E6588. Epub 2015; Nov 9. DOI 10.1073/pnas.1515308112.

2. Beckwith E.J., Yanovsky M.J. Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks. Curr. Opin. Gene Dev. 2014;27:35-42. DOI 10.1016/j.gde.2014.03.007.

3. Blum I.D., Lamont E.W., Abizaid A. Competing clocks: metabolic status moderates signals from the master circadian pacemaker. Neurosci. Biobehav. Rev. 2012;36(1):254-270. Epub 2011; Jun 12. DOI 10.1016/j.neubiorev.2011.06.003.

4. Cao Q., Gery S., Dashti A., Yin D., Zhou Y., Gu J., Koeffler H.P. A role for the clock gene Per1 in prostate cancer. Cancer Res. 2009;69(19): 7619-7625.

5. Castelo-Szekely V., Arpat A.B., Janich P., Gatfield D. Translational contributions to tissue specificity in rhythmic and constitutive gene expression. Genome Biol. 2017;18(1):116. PMID: 28622766Ko.

6. Eckel-Mahan K.L., Patel V.R., Mohney R.P., Vignola K.S., Baldi P., Sassone-Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. USA. 2012;109(14):55415546. Epub 2012; Mar 19. DOI 10.1073/pnas.1118726109.

7. Fang L., Yang Z., Zhou J., Tung J.Y., Hsiao C.D., Wang L., Deng Y., Wang P., Wang J., Lee M.H. Circadian clock gene CRY2 degradation is involved in chemoresistance of colorectal cancer. Mol. Cancer Ther. 2015;14(6):1476-1487.

8. Flôres D.E., Bettilyon C.N., Yamazaki S. Period-independent novel circadian oscillators revealed by timed exercise and palatable meals. Sci. Rep. 2016;6:21945. DOI 10.1038/srep21945.

9. Harfmann B.D., Schroder E.A., Esser K.A. Circadian rhythms, the molecular clock, and skeletal muscle. J. Biol. Rhythms. 2015;30(2):8494. Epub 2014; Dec 15. DOI 10.1177/0748730414561638.

10. Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44-57.

11. Hughes M.E., Hogenesch J.B., Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms. 2010;25(5):372-380. DOI 10.1177/0748730410379711.

12. Hutchison A.L., Maienschein-Cline M., Chiang A.H., Ali Tabei S.M., Gudjonson H., Bahroos N., Allada R., Dinner A.R. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput. Biol. 2015;11(3):e1004094. DOI 10.1371/journal.pcbi.1004094.

13. Ingolia N.T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 2014;15(3):205-213. Epub 2014; Jan 28. DOI 10.1038/nrg3645.

14. Janich P., Arpat A.B., Castelo-Szekely V., Lopes M., Gatfield D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 2015;25(12):1848-1859. PMID: 26486724.

15. Jouffe C., Cretenet G., Symul L., Martin E., Atger F., Naef F., Gachon F. The circadian clock coordinates ribosome biogenesis. PLoS Biol. 2013;11(1):e1001455. Epub 2013; Jan 3. DOI 10.1371/journal.pbio.1001455.

16. Kettner N.M., Katchy C.A., Fu L. Circadian gene variants in cancer. Ann. Med. 2014;46(4):208-220.

17. Koike N., Yoo S.H., Huang H.C., Kumar V., Lee C., Kim T.K., Takahashi J.S. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105): 349-354.

18. Kojima S., Sher-Chen E.L., Green C.B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012;26:2724-2736.

19. Labrecque N., Cermakian N. Circadian clocks in the immune system. J. Biol. Rhythms. 2015;30(4):277-290.

20. Laing E.E., Johnston J.D., Möller-Levet C.S., Bucca G., Smith C.P., Dijk D.J., Archer S.N. Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health. Bioessays. 2015;37(5):544-556. Epub 2015; Mar 14. DOI 10.1002/bies.201400193.

21. Lück S., Thurley K., Thaben P.F., Westermark P.O. Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell. Rep. 2014;9(2):741-751.

22. Mauvoisin D., Wang J., Jouffe C., Martin E., Atger F., Waridel P., Quadroni M., Gachon F., Naef F. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc. Natl. Acad. Sci. USA. 2014;111(1):167-172.

23. McCarthy M.J., Welsh D.K. Cellular circadian clocks in mood disorders. J. Biol. Rhythms. 2012;27(5):339-352. Menet J.S., Rodriguez J., Abruzzi K.C., Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLIFE. 2012;1:e00011. DOI 10.7554/eLife.00011.

24. Morf J., Rey G., Schneider K., Stratmann M., Fujita J., Naef F. Schibler U. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science. 2012;338(6105): 379-383.

25. Nolte C., Staiger D. RNA around the clock – regulation at the RNA level in biological timing. Front. Plant Sci. 2015;6:311. DOI 10.3389/fpls.2015.00311.

26. Oishi K., Ohkura N., Amagai N., Ishida N. Involvement of circadian clock gene Clock in diabetes-induced circadian augmentation of plasminogen activator inhibitor-1 (PAI-1) expression in the mouse heart. FEBS Lett. 2005;579(17):3555-3559. DOI 10.1016/j.febslet. 2005.05.027.

27. Panda S., Antoch M.P., Miller B.H., Su A.I., Schook A.B., Straume M., Schultz P.G., Kay S.A., Takahashi J.S., Hogenesch J.B. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307-320.

28. Pendergast J.S., Yamazaki S. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice. Physiol. Behav. 2014;128:92-98. Epub 2014; Feb 11. DOI 10.1016/j.physbeh.2014. 01.021.

29. Reddy A.B., Karp N.A., Maywood E.S., Sage E.A., Deery M., O’Neill J.S., Wong G.K., Chesham J., Odell M., Lilley K.S., Kyriacou C.P., Hastings M.H. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006;16(11):1107-1115.

30. Robles M.S., Cox J., Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047. DOI 10.1371/journal.pgen.1004047.

31. Robles M.S., Mann M. Proteomic approaches in circadian biology. In: Circadian Clocks: Handb. Exp. Pharmacol. A. Kramer, M. Merrow (Eds.) Springer, 2013;(217):389-407. DOI 10.1007/978-3-64225950-0_17.

32. Smircich P., Eastman G., Bispo S., Duhagon M.A., Guerra-Slompo E.P., Garat B., Goldenberg S., Munroe D.J., Dallagiovanna B., Holetz F., Sotelo-Silveira J.R. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:443. DOI 10.1186/s12864-015-1563-8.

33. Sundar I.K., Yao H., Sellix M.T., Rahman I. Circadian molecular clock in lung pathophysiology. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;309(10):L1056-L1075. DOI 10.1152/ajplung.00152.2015.

34. Takahashi J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017;18(3):164-179. Epub 2016; Dec 19. DOI 10.1038/nrg.2016.150.

35. Vollmers C., Gill S., DiTacchio L., Pulivarthy S.R., Le H.D., Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. USA. 2009;106(50): 21453-21458. Epub 2009; Nov 25. DOI 10.1073/pnas.0909591106.

36. Zhang R., Lahens N.F., Balance H.I., Hughes M.E., Hogenesch J.B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. USA. 2014;111(45):1621916224. PMID: 25349387. DOI 10.1073/pnas.1408886111.


Дополнительные файлы

Просмотров: 153

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)