1. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene Ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25-29. https://doi.org/10.1038/75556.
2. Benus R.F., Bohus B., Koolhaas J.M., van Oortmerssen G.A. Behavioural differences between artificially selected aggressive and nonaggressive mice: response to apomorphine. Behav. Brain Res. 1991; 43(2):203-208. https://doi.org/10.1016/S0166-4328(05)80072-5.
3. Berhow M.T., Russell D.S., Terwilliger R.Z., Beitner-Johnson D., Self D.W., Lindsay R.M., Nestler E.J. Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience. 1995; 68(4):969-979.
4. Beurel E., Jope R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol. 2006;79(4):173-189. https://doi.org/10.1016/j.pneurobio.2006.07.006.
5. Bondar N.P., Ul’yana A.B., Kovalenko I.L., Filipenko M.L., Kudryavtseva N.N. Molecular implications of repeated aggression: Th, Dat1, Snca and Bdnf gene expression in the VTA of victorious male mice. PLoS ONE. 2009; 4(1):e4190. https://doi.org/10.1371/journal.pone.0004190.
6. Chip S., Fernandez-Lopez D., Li F., Faustino J., Derugin N., Vexler Z.S. Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke. Brain Behav. Immun. 2017;60:270281. https://doi.org/10.1016/j.bbi.2016.11.005.
7. Craig I.W., Halton K.E. Genetics of human aggressive behaviour. Hu man Genetics. 2009;126(1):101-113. https://doi.org/10.1007/s00439-0090695-9.
8. Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., McVean G. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-2158. https://doi.org/10.1093/bioinformatics/btr330.
9. Demas G.E., Kriegsfeld L.J., Blackshaw S., Huang P., Gammie S.C., Nelson R.J., Snyder S.H. Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase. J. Neurosci. 1999; 19:RC30. https://doi.org/0270-6474/99/190001.
10. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biology. 2012;11(3,4):149-161. https://doi.org/10.3233/ISB-2012-0449.
11. Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. https://doi.org/10.1093/bioinformatics/bts635.
12. Dorofeeva N.A., Nikitina L.S., Glazova M.V., Kirillova O.D., Chernigovskaia E.V. Inactivation of p53 leads to enhancement of tyrosine hydroxylase biosynthesis in the dopaminergic brain neurons. Zhurnal Evoliutsionnoi Biokhimii i Fiziologii. 2013;49(2):137-143.
13. Durdiaková J., Warrier V., Banerjee-Basu S., Baron-Cohen S., Chakrabarti B. STX1A and Asperger syndrome: a replication study. Mol. Autism. 2014;5:14. https://doi.org/10.1186/2040-2392-5-14.
14. Feng L., Balakir R., Precht P., Horton W.E. Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis. J. Cell. Biochem. 1999;74(4):576-586. https://doi.org/10.1002/(SICI)1097-4644(19990915)74:4<576::AID-JCB7>3.0. CO;2-N.
15. Franklin J.L. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid. Redox Signal. 2011;14(8):1437-1448. https://doi.org/10.1089/ars.2010.3596.
16. Fukuchi M., Fujii H., Takachi H., Ichinose H., Kuwana Y., Tabuchi A., Tsuda M. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca2+ signals evoked via the N-methyl-d-aspartate (NMDA) receptor. Brain Res. 2010; 1366:18-26. https://doi.org/10.1016/j.brainres.2010.10.034.
17. Gammie S.C., D’Anna K.L., Gerstein H., Stevenson S.A. Neurotensin inversely modulates maternal aggression. Neuroscience. 2009; 158(4):1215-1223. https://doi.org/10.1016/j.neuroscience.2008.11.045.
18. Georgievska B., Carlsson T., Lacar B., Winkler C., Kirik D. Dissociation between short-term increased graft survival and long-term functional improvements in Parkinsonian rats overexpressing glial cell line-derived neurotrophic factor. Eur. J. Neurosci. 2004;20(11):31213130. https://doi.org/10.1111/j.1460-9568.2004.03770.x.
19. Hagberg A., Swart P., Chult D.S. Exploring network structure, dynamics, and function using NetworkX: Proc. of the 7th Python in Sci. Conf. (SciPy 2008). USA: Los Alamos National Laboratory (LANL), 2008;11-15.
20. Hinde R. Animal Behaviour: A Synthesis of Ethology and Comparative Psychology. 2nd ed. N. Y., St.Louis, San Francisco, Dusseldorf, London, Mexico, Panama, Sydney, Toronto: McGraw-Hill, 1970. [Russ. ed.: Khaynd R. Povedenie zhivotnykh. Sintez etologii i sravnitelnoy psikhologii. Moscow: Mir Publ., 1975. (in Russian)]
21. Hotchkiss A.K., Pyter L.M., Gatien M.L., Wen J.C., Milman H.A., Nelson R.J. Aggressive behavior increases after termination of chronic sildenafil treatment in mice. Physiol. Behav. 2005;83(5):683-688. https://doi.org/10.1016/j.physbeh.2004.09.005.
22. Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4(1):44-57. https://doi.org/10.1038/nprot.2008.211.
23. Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Naumenko V.S. Expression of apoptosis genes in the brain of rats with genetically defined fear-induced aggression. Mol. Biol. 2016;50(5):719-724. https://doi.org/10.1134/S0026893316030079.
24. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. https://doi.org/10.1186/1752-0509-9-S2-S2.
25. Kansy J.W., Daubner S.C., Nishi A., Sotogaku N., Lloyd M.D., Nguyen C., Lu L., Haycock J.W., Hope B.T., Fitzpatrick P.F., Bibb J.A. Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J. Neurochem. 2004;91(2):374-384. https://doi.org/10.1111/j.14714159.2004.02723.x.
26. Kim M.S., Kim J.H., Lee M.R., Kang J.H., Kim H.J., Ko H.M., Choi C.H., Jung J.Y., Koh J.T., Kim B.K., Oh H.K. Effects of alendronate on a disintegrin and metalloproteinase with thrombospondin motifs expression in the developing epiphyseal cartilage in rats. Anat. Histol. Embryol. 2009;38(2):154-160. https://doi.org/10.1111/j.14390264.2008.00920.x.
27. Klooster A.R., Bernier S.M. Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocyte. Arthritis. Res. Ther. 2004;7(1):R127. https://doi.org/10.1186/ar1464.
28. Koike T., Wakabayashi T., Mori T., Hirahara Y., Yamada H. Sox2 promotes survival of satellite glial cells in vitro. Biochem. Biophys. Res. Commun. 2015;464(1):269-274. https://doi.org/10.1016/j.bbrc.2015.06.141.
29. Kozhemyakina R.V., Konoshenko M.Yu., Sakharov D.G., Smagin D.A., Markel A.L. Comparative analysis of the behavior of wild Norway rats (Rattus norvegicus) and Norway rats selected for tolerant and aggressive behavior in the open field test. Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2016;66(1):92-102. https://doi.org/10.7868/ S0044467716010093. (in Russian)
30. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987-2993. https://doi.org/10.1093/bioinformatics/btr509.
31. Lorenz K. On Aggression. Psychology Press, 2002. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
32. Maney D.L., Erwin K.L., Goode C.T. Neuroendocrine correlates of behavioral polymorphism in white-throated sparrows. Horm. Behav. 2005;48(2):196-206. https://doi.org/10.1016/j.yhbeh.2005.03.004.
33. Mao Z., Bonni A., Xia F., Nadal-Vicens M., Greenberg M.E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999;286(5440):785-790. https://doi.org/10.1126/science.286.5440.785.
34. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., Flicek P., Cunningham F. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122. https://doi.org/10.1186/s13059-016-0974-4.
35. Narayanan V. Tuberous sclerosis complex: genetics to pathogenesis. Pediatr. Neurol. 2003;29(5):404-409. https://doi.org/10.1016/j.pediatrneurol. 2003.09.002.
36. Narkis G., Ofir R., Manor E., Landau D., Elbedour K., Birk O.S. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol3-kinase/Akt pathway. Am. J. Hum. Genet. 2007;81(3):589-595. https://doi.org/10.1086/520770.
37. Okamoto S.I., Li Z., Ju C., Schölzke M.N., Mathews E., Cui J., Salvesen G.S., Bossy-Wetzel E., Lipton S.A. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA. 2002;99(6): 3974-3979. https://doi.org/10.1073/pnas.022036399.
38. Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385. https://doi.org/10.1016/S00319384(96)00445-3.
39. Prince J.E., Brignall A.C., Cutforth T., Shen K., Cloutier J.F. Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development. 2013; 140(11):2398-2408. https://doi.org/10.1242/dev.087262.
40. Rong W., Wang J., Liu X., Jiang L., Wei F., Hu X., Han X., Liu Z. Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury. Neurochem. Res. 2012;37(8):1615-1623. https://doi.org/10.1007/s11064-012-0756-7.
41. Ryan L.A., Peng H., Erichsen D.A., Huang Y., Persidsky Y., Zhou Y., Gendelman H.E., Zheng J. TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J. Neuroimmunol. 2004;148(1):127-139. https://doi.org/10.1016/j.jneuroim.2003.11.019.
42. Sairanen T., Szepesi R., Karjalainen-Lindsberg M.L., Saksi J., Paetau A., Lindsberg P.J. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol. 2009;118(4):541-552. https://doi.org/10.1007/s00401-0090559-3.
43. Schlisio S. Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum. J. Cell. Mol. Med. 2009;13(10):4104-4112. https://doi.org/10.1111/j.1582-4934.2009.00881.x.
44. Sekiguchi J., Ferguson D.O., Chen H.T., Yang E.M., Earle J., Frank K., Whitlow S., Gu Y., Xu Y., Nussenzweig A., Alt F.W. Genetic interactions between ATM and the nonhomologous end-joining factors in genomic stability and development. Proc. Natl. Acad. Sci. USA. 2001;98(6):3243-3248. https://doi.org/10.1073/pnas.051632098.
45. Songin M., Jęśko H., Czapski G., Adamczyk A., Strosznajder R.P. GSK-3β and oxidative stress in aged brain. Role of poly (ADP). Folia Neuropathol. 2007;45(4):220-229.
46. Tang X., Jang S.W., Okada M., Chan C.B., Feng Y., Liu Y., Luo S.W., Hong Y., Rama N., Xiong W.C., Mehlen P. Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat. Cell Biol. 2008;10(6):698. https://doi.org/10.1038/ncb1732.
47. Wang D.S., Bennett D.A., Mufson E.J., Mattila P., Cochran E., Dickson D.W. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci. Res. 2004;48(1):93100. https://doi.org/10.1016/j.neures.2003.10.002.
48. Wang Y.C., He F., Ma J., Zhou D., Liang Y., Gong Y.X. Impacts of electroacupuncture on ubiquitin-proteasome system in rats with Parkinson’s disease. Zhongguo Zhen Jiu = Chinese Acupuncture & Moxibustion. 2013;33(8):725-729.
49. Wu L., Zhao Q., Zhu X., Peng M., Jia C., Wu W., Zheng J., Wu X.Z. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol. 2010;20(6):1042-1054. https://doi.org/10.1111/j.1750-3639.2010.00410.x.
50. Xie B., Wang C., Zheng Z., Song B., Ma C., Thiel G., Li M. Egr-1 transactivates Bim gene expression to promote neuronal apoptosis. J. Neurosci. 2011;31(13):5032-5044. https://doi.org/10.1523/JNEUROSCI. 5504-10.2011.
51. Yates A., Akanni W., Amode M.R., Barrell D., Billis K., Carvalho-Silva D., Cummins C., Clapham P., Fitzgerald S., Gil L., Girón C.G., Gordon L., Hourlier T., Hunt S.E., Janacek S.H., Johnson N., Juettemann T., Keenan S., Lavidas I., Martin F.J., Maurel T., McLaren W., Murphy D.N., Nag R., Nuhn M., Parker A., Patricio M., Pignatelli M., Rahtz M., Riat H.S., Sheppard D., Taylor K., Thormann A., Vullo A., Wilder S.P., Zadissa A., Birney E., Harrow J., Muffato M., Perry E., Ruffier M., Spudich G., Trevanion S.J., Cunningham F., Aken B.L., Zerbino D.R., Flicek P. Ensembl 2016. Nucleic Acids Res. 2015;44(D1):D710-D716. https://doi.org/10.1093/nar/gkv1157.