Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Knockdown of hexokinase 2 results in a decreased expression level of the glycolytic enzymes PFKP, BPGM, and GPI in RKO cell line

https://doi.org/10.18699/VJ17.315

Abstract

Colorectal cancer (CRC) is one of the most common malignant neoplasms in the world, and is characterized by a high mortality rate. The study of the key aspects of colorectal cancer formation and progression is necessary to develop new approaches to its therapy, as well as to search for new diagnostic, prognostic and predictive biomarkers of CRC. In many types of tumors, one of the key changes in metabolism is the  activation of glycolysis, which is associated with alterations in the expression of the main glycolytic enzymes and regulatory molecules. There is often an increase in hexokinase 2 (HK2) exogenous expression in tumor cells, which makes it a promising target for anticancer therapy. Quantitative expression analysis of 15 genes (GAPDH, ADPGK, ALDOA, ENO3, PFKL, PGK1, PGAM1, PKM2, ENO1, PDK1, PDK3, PFKP, ENO2, GPI, and BPGM), encoding the key glycolysis enzymes, as well as HIF1A gene was carried out in a modified RKO cell line, which constantly expresses the short hairpin RNA (shRNA) for the inhibition of hexokinase 2. A significant decrease in the expression of PFKP, BPGM, and GPI genes both at the mRNA (5­, 86­, and 93­fold, respectively) and protein (2.5­, 3.5­, and 19­fold, respectively) levels was revealed. Probably, the downregulation of GPI and PFKP is associated with a decrease in the amount of their substrates, glucose­6­phosphate and fructose6­phosphate, under the inhibition of hexokinase 2. Nevertheless, the cause of a decreased mRNA level of these three enzymes, while the expression level of other glycolytic participants is constant, requires further investigation.

About the Authors

M. S. Fedorova
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


I. Y. Karpova
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


A. V. Lipatova
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


E. A. Pudova
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


Z. G. Guvatova
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


D. V. Kochetkov
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


A. V. Chaika
National Medical Research Radiological Center, Ministry of Health of the Russian Federation.
Russian Federation
Moscow.


B. Y. Alekseev
National Medical Research Radiological Center, Ministry of Health of the Russian Federation.
Russian Federation
Moscow.


M. V. Kiseleva
National Medical Research Radiological Center, Ministry of Health of the Russian Federation.
Russian Federation
Moscow.


A. D. Kaprin
National Medical Research Radiological Center, Ministry of Health of the Russian Federation.
Russian Federation
Moscow.


A. V. Kudryavtseva
Engelhardt Institute of Molecular Biology RAS; National Medical Research Radiological Center, Ministry of Health of the Russian Federation.
Russian Federation
Moscow.


A. V.  Snezhkina
Engelhardt Institute of Molecular Biology RAS.
Russian Federation
Moscow.


References

1. Cho J., King J.S., Qian X., Harwood A.J., Shears S.B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA. 2008;105(16):5998-6003. DOI 10.1073/pnas.0710980105.

2. Dmitriev A.A., Kudryavtseva A.V., Krasnov G.S., Koroban N.V., Speranskaya A.S., Krinitsina A.A., Belenikin M.S., Snezhkina A.V., Sadritdinova A.F., Kishlyan N.V., Rozhmina T.A., Yurkevich O.Y., Muravenko O.V., Bolsheva N.L., Melnikova N.V. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 2016;16(Suppl. 3):237. DOI 10.1186/s12870-016-0927-9.

3. Funasaka T., Yanagawa T., Hogan V., Raz A. Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J. 2005;19(11):1422-1430. DOI 10.1096/fj.05-3699com.

4. Graziano F., Ruzzo A., Giacomini E., Ricciardi T., Aprile G., Loupakis F., Lorenzini P., Ongaro E., Zoratto F., Catalano V., Sarti D., Rulli E., Cremolini C., De Nictolis M., De Maglio G., Falcone A., Fiorentini G., Magnani M. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J. 2017;17(3):258-264. DOI 10.1038/tpj.2016.13.

5. Haraldson K., Kashuba V.I., Dmitriev A.A., Senchenko V.N., Kudryav tseva A.V., Pavlova T.V., Braga E.A., Pronina I.V., Kondratov A.G., Rynditch A.V., Lerman M.I., Zabarovsky E.R. LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibit cell growth and replication. Biochimie. 2012;94:1151-1157. DOI 10.1016/j.biochi.2012.01.019.

6. Hsu P.P., Sabatini D.M. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703-707. DOI 10.1016/j.cell.2008.08.021.

7. Izuishi K., Yamamoto Y., Sano T., Takebayashi R., Nishiyama Y., Mori H., Masaki T., Morishita A., Suzuki Y. Molecular mechanism underlying the detection of colorectal cancer by 18F-2-fluoro2-deoxy-D-glucose positron emission tomography. J. Gastrointest. Surg. 2012;16(2):394-400. DOI 10.1007/s11605-011-1727-z.

8. Katagiri M., Karasawa H., Takagi K., Nakayama S., Yabuuchi S., Fujishima F., Naitoh T., Watanabe M., Suzuki T., Unno M. Hexokinase 2 in colorectal cancer: a potent prognostic factor associated with glycolysis, proliferation and migration. Histol. Histopathol. 2017; 32(4):351-360. DOI 10.14670/HH-11-799.

9. Kim J.W., Dang C.V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 2005;30(3):142-150. DOI 10.1016/j.tibs.2005.01.005.

10. Krasnov G.S., Dmitriev A.A., Lakunina V.A., Kirpiy A.A., Kudryavtseva A.V. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin. Ther. Targets. 2013a;17(10):1221-1233. DOI 10.1517/14728222.2013.833607.

11. Krasnov G.S., Dmitriev A.A., Sadtritdinova A.F., Fedorova M.S., Snezh kina A.V., Melnikova N.V., Poteryakhina A.V., Nyushko K.M., Belyakov M.M., Kaprin A.D., Zaretsky A.R., Kudryavtseva A.V. Evaluation of gene expression of hexokinases in colorectal cancer with the use of bioinformatics methods. Biofizika. 2015;60(6):1050-1056. DOI 10.1134/S0006350915060172.

12. Krasnov G.S., Dmitriev A.A., Snezhkina A.V., Kudryavtseva A.V. De regulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin. Ther. Targets. 2013b;17(6):681-693. DOI 10.1517/14728222.2013.775253.

13. Kudryavtseva A.V., Fedorova M.S., Zhavoronkov A., Moskalev A.A., Zasedatelev A.S., Dmitriev A.A., Sadritdinova A.F., Karpova I.Y., Nyushko K.M., Kalinin D.V., Volchenko N.N., Melnikova N.V., Klimina K.M., Sidorov D.V., Popov A.Y., Nasedkina T.V., Kaprin A.D., Alekseev B.Y., Krasnov G.S., Snezhkina A.V. Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genet. 2016a; 17(Suppl. 3):156. DOI 10.1186/s12863-016-0459-1.

14. Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., Alekseev B.Y., Kardymon O.L., Sadritdinova A.F., Fedorova M.S., Pokrovsky A.V., Melnikova N.V., Kaprin A.D., Moskalev A.A., Snezhkina A.V. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016b;7(29):44879-44905. DOI 10.18632/oncotarget.9821.

15. Kudryavtseva A.V., Lipatova A.V., Zaretsky A.R., Moskalev A.A., Fedorova M.S., Rasskazova A.S., Shibukhova G.A., Snezhkina A.V., Kaprin A.D., Alekseev B.Y., Dmitriev A.A., Krasnov G.S. Important molecular genetic markers of colorectal cancer. Oncotarget. 2016c; 7(33):53959-53983. DOI 10.18632/oncotarget.9796.

16. Mathupala S.P., Rempel A., Pedersen P.L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 2001;276(46):43407-43412. DOI 10.1074/jbc. M108181200.

17. Melnikova N.V., Dmitriev A.A., Belenikin M.S., Koroban N.V., Speranskaya A.S., Krinitsina A.A., Krasnov G.S., Lakunina V.A., Snezh kina A.V., Sadritdinova A.F., Kishlyan N.V., Rozhmina T.A., Klimina K.M., Amosova A.V., Zelenin A.V., Muravenko O.V., Bolsheva N.L., Kudryavtseva A.V. Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front. Plant Sci. 2016;7:399. DOI 10.3389/fpls.2016.00399.

18. Oparina N.Y., Snezhkina A.V., Sadritdinova A.F., Veselovskii V.A., Dmitriev A.A., Senchenko V.N., Mel’nikova N.V., Speranskaya A.S., Darii M.V., Stepanov O.A., Barkhatov I.M., Kudryavtseva A.V. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 2013;49(7):707-716. DOI 10.1134/S1022795413050104.

19. Pastorino J.G., Shulga N., Hoek J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 2002;277(9):7610-7618. DOI 10.1074/jbc.M109950200.

20. Siegel R.L., Miller K.D., Fedewa S.A., Ahnen D.J., Meester R.G.S., Barzi A., Jemal A. Colorectal cancer statistics, 2017. CA: Cancer J. Clin. 2017;67(3):177-193. DOI 10.3322/caac.21220.

21. Snezhkina A.V., Krasnov G.S., Zaretsky A.R., Zhavoronkov A., Nyu - shko K.M., Moskalev A.A., Karpova I.Y., Afremova A.I., Lipatova A.V., Kochetkov D.V., Fedorova M.S., Volchenko N.N., Sadritdinova A.F., Melnikova N.V., Sidorov D.V., Popov A.Y., Kalinin D.V., Kaprin A.D., Alekseev B.Y., Dmitriev A.A., Kudryavtseva A.V. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. BMC Genomics. 2016;17(Suppl. 14):1011. DOI 10.1186/s12864-0163351-5.

22. Wang W., Liu Z., Zhao L., Sun J., He Q., Yan W., Lu Z., Wang A. Hexokinase 2 enhances the metastatic potential of tongue squamous cell carcinoma via the SOD2-H2O2 pathway. Oncotarget. 2017;8(2): 3344-3354. DOI 10.18632/oncotarget.13763.

23. Wang J., Zhang P., Zhong J., Tan M., Ge J., Tao L., Li Y., Zhu Y., Wu L., Qiu J., Tong X. The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma. Oncotarget. 2016;7(19):27142-27157. DOI 10.18632/oncotarget.8382.

24. Warburg O. Origin of cancer cells. Oncologia. 1956;9(2):75-83. DOI 10.1126/science.123.3191.309.

25. Wilson J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 2003; 206(12):2049-2057. DOI 10.1242/jeb.00241.

26. Yeh C.S., Wang J.Y., Chung F.Y., Lee S.C., Huang M.Y., Kuo C.W., Yang M.J., Lin S.R. Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol. Rep. 2008;19(1):81-91. DOI 10.3892/or.19.1.81.


Review

Views: 884


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)