Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Phylogenetic analysis of the microbial mat in the hot spring Garga (Baikal rift zone) and the diversity of natural peptidases

https://doi.org/10.18699/VJ17.319

Abstract

Hydrolytic bacteria (in particular, proteolytics) are the primary destructors in hot springs. The proteolytic bacteria are able to secrete enzymes that are active in wide ranges of pH and temperature. The aim of this work was to study the taxonomic composition, the structure of the bacterial microbial mat, and to study the distribution of peptidases in the thermophilic microbial Garga community. For the study, we sampled the microbial mat at a water temperature of 54.2 °C and a pH of 8.3. Hydrochemical analysis of water showed a high content of sulfates, 390 mg/dm3. The microelement composition of water showed that the Garga water had increased concentrations of B, Rb, Li, Ba, Sr. We analyzed the taxonomic diversity of the microbial community in the hot spring Garga at a temperature zone of 54 °C. The structure of the microbial mat is represented by various phylogenetic groups of mesophilic and thermophilic bacteria, with various metabolic and ecological functions. The dominant group in this community was the phylum Firmicutes (64 %). The analysis of the collected metagenomic sequences of the microbial community allowed the detected peptidases in the microbial community in the hot spring Garga to be for the first time systematized and characterized. Comparisons of metagenomic sequences of representative data showed a dominance of serine peptidase class enzymes. Natural peptidases in the investigated microbial community ensure the hydrolysis of biopolymers at the first stages of the destruction of organic matter and may have biotechnological relevance.

About the Authors

E. V. Lavrentyeva
Institute of General and Experimental Biology SB RAS; Buryat State University.
Russian Federation
Ulan­-Ude.


A. A. Radnagurueva
Institute of General and Experimental Biology SB RAS.
Russian Federation
Ulan­-Ude.


T. G. Banzaraktsaeva
Institute of General and Experimental Biology SB RAS.
Russian Federation
Ulan­-Ude.


S. M. Bazarov
Institute of General and Experimental Biology SB RAS.
Russian Federation
Ulan­-Ude.


D. D. Barkhutova
Institute of General and Experimental Biology SB RAS.
Russian Federation
Ulan­-Ude.


I. D. Ulzetueva
Baikal Institute of Nature Management SB RAS.
Russian Federation
Ulan­-Ude.


M. K. Chernyavsky
Geological Institute SB RAS.
Russian Federation
Ulan­-Ude.


M. R. Kabilov
Institute of Chemical Biology and Fundamental Medicine SB RAS.
Russian Federation
Novosibirsk.


V. V. Khakhinov
Buryat State University.
Russian Federation
Ulan­-Ude.


References

1. Andrade C.M., Aguiar W.B., Antranikian G. Physiological aspects involved in production of xylanolytic ensymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl. Biochem. Biothechnol. 2001;91-93:655-669.

2. Barkhutova D.D., Tsyrenova D.D., Bryanskaya A.V., Danilova E.V., Zaitseva S.V., Namsaraev Z.B. Mikrobnye maty. Geokhimicheskaya deyatel’nost’ mikroorganizmov gidroterm Baykal’skoy riftovoy zony [Microbial mats. Geochemical activity of microorganisms in thermal springs of the Baikal Rift zone]. Novosibirsk: Acad. Publ. House “Geo”, 2011. (in Russian)

3. Bergquist P.L., Gibbs M.D., Morris D.D., Teʼo V.S.J., Saul D.J., Morgan H.W. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol. Ecol. 1999;28:99-110.

4. Bonch-Osmolovskaya E.A. Thermophilic microorganisms: a general overview. Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. [Gal’chenko V.F. (Ed.) Proceeding of the Winogradsky Institute of Microbiology]. Moscow: Nauka Publ., 2011;5-14. (in Russian)

5. Grady E.N., MacDonald J., Liu L., Richman A., Yuan Z.-C. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Factories. 2016;15:203. DOI 10.1186/s12934-016-0603-7.

6. Gupta R., Beg Q., Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2003;59(1):15-32.

7. Kozina I.V., Kublanov I.V., Kolganova T.V., Chernyh N.V., BonchOsmolovskaya E.A. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 2010;60:1372-1375.

8. Krishnan T., Chandra A.K. Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Appl. Environ. Microbiol. 1983;46:430-437.

9. Kublanov I.V., Podosokorska O.A. Thermophilic microorganisms decomposing biopolymers. Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. [Gal’chenko V.F. (Ed.) Proceeding of the Winogradsky Institute of Microbiology]. Moscow: Nauka Publ., 2011;315342. (in Russian)

10. Lomonosov I.S. Geokhimiya i formirovanie sovremennykh gidroterm Baykalskoy riftovoy zony [Geochemistry and Formation of Modern Thermal Springs in the Baikal Rift Zone]. Novosibirsk: Nauka Publ., 1974. (in Russian)

11. Mackenzie R., Pedrós-Alió C., Díez B. Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles. 2013;17:123-136. DOI 10.1007/s00792-012-0499-z.

12. Madigan M.T. Bacterial habitats in extreme environments. Journey to Diverse Microbial. Worlds. 2000; 2:61-72.

13. Namsaraev Z.B., Zaitseva S.V., Dmitrieva O.M., Barkhutova D.D. Structure and functional activity of microbial mats of the Garga thermal spring (Barguzin valley). Vestnik Buryatskogo gosudarstvennogo universiteta = Bulletin of the Buryat State University. 2011;14а: 231-239. (in Russian)

14. Oliveira A.S., Xavier-Filho J., Sales M.P. Cysteine proteinases and cystatins. Brazil. Arch. Biol. Technol. 2003;46(1):91-104.

15. Portillo M.C., Sririn V., Kanoksilapatham W., Gonzalez J.M. Differential microbial communities in hot spring mats from Western Thailand. Extremophiles. 2009; 13(2):321-331. DOI 10.1007/s00792008-0219-x.

16. Radnagurueva A.A., Lavrentieva E.V., Budagaeva V.G., Barkhutova D.D., Namsaraev B.B., Dunaevsky Y.E. Organotrophic bacteria of the Baikal Rift Zone hot springs. Microbiology (Mikrobiologiya). 2016;85(3):367-378.

17. Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998;62(3):597-635.

18. Thibault V., Lovejoy C., Jungblut A.D., Vincent W.F., Corbeil J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 2010; 55(5):1901-1911. DOI 10.4319/lo.2010.55.5.190.

19. Uhl A.M., Daniel R.M. The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii AN1. Extremophiles. 1999;3:263-267.

20. Ward D.E., Shockley K.R., Chang L.S., Levy R.D., Michel J.K., Conners S.B., Kelly R.M. Proteolysis in hyperthermophilic microorganisms. Archaea. 2002;1:63-74.

21. Zamana L.V., Khakhinov V.V., Danilova E.V., Barkhutova D.D. Hydrochemistry of mineral waters. Geokhimicheskaya deyatelnost mikroorganizmov gidroterm Baykalskoy riftovoy zony [Geochemical activity of microorganisms in thermal springs of the Baikal Rift zone]. Novosibirsk: Acad. Publ. House “Geo”, 2011;62-101. (in Russian)


Review

Views: 681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)