Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Растительные системы экспрессии в качестве продуцентов рекомбинантных фармацевтически ценных белков

https://doi.org/10.18699/VJ17.322

Полный текст:

Аннотация

Рынок фармацевтически ценных белков – наиболее быстро развивающийся сегмент экономики. Большая часть биофармацевтиков получена в клетках млекопитающих и микроорганизмов, однако обе системы обладают рядом недостатков. Растительные клетки сочетают в себе достоинства эукариотической системы наработки белка и простоту и дешевизну бактериальной. Использование растений для получения рекомбинантных белков – экономически значимое и перспективное направление. Преимуществом растительных систем является более низкая стоимость культивирования клеток. Они свободны от нежелательных компонентов, таких как эндотоксины бактерий, гипергликозилированные белки, продуцируемые дрожжами, патогены животных и человека в клеточных культурах трансгенных животных. Растения относятся к высшим эукариотам, поэтому в их клетках происходит полноценный фолдинг и образование сложных мультимерных белковых комплексов, а также значительная часть посттрансляционных модификаций аналогично таковым в клетках млекопитающих. Развиваемые ныне растительные системы экспрессии рекомбинантных белков чрезвычайно разнообразны и насчитывают более 100 различных технологий, основанных на разных видах растений, способах переноса генов, экспрессионных стратегиях, методах последующего извлечения целевого белка и пр. К ним относятся ядерная и пластидная трансформация, транзиентная и стабильная экспрессия при трансформации с помощью агробактериального переноса, бомбардировки или электропорации, культивирование целых наземных или водных растений, растительных тканей или суспензионных клеточных культур в качестве экспрессионных систем. В обзоре анализируется современное состояние исследований в области использования растительных систем экспрессии для наработки рекомбинантных фармацевтических белков. Сделан акцент на преимуществах культур растительных клеток по сравнению с другими системами экспрессии. Описаны растительные системы для наработки рекомбинантных белков, такие как транспластомные растения, культуры мхов и водных растений, а также суспензионные культуры клеток высших растений. Рассмотрено современное состояние рынка рекомбинантных белков, полученных с применением растительных систем экспрессии. Обсуждаются перспективы растительных («съедобных») вакцин, созданных на основе генетически модифицированных растений.

Об авторах

Е. В. Дейнеко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


А. А. Загорская
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Список литературы

1. Almaraz-Delgado A.L., Flores-Uribe J., Perez-Espana V.H., SalgadoManjarrez E., Badillo-Corona J.A. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express. 2014;4:57. DOI 10.1186/s13568-014-0057-4. PMID:25136510.

2. Apeler H., Peters J., Schroder W. Expression, purification, and pharmacological characterization of a recombinant aprotinin variant. Drug Res. 2004;54(8):483-497. DOI 10.1055/s-0031-1297003.

3. Arakawa T., Chong D.K.X., Langridge H.R. Efficacy of food plantbased oral cholera toxin B sununit vaccine. Nat. Biotechnol. 1998; 16:292-297. DOI 10.1038/nbt0398-292.

4. Boynton J.E., Gilham N.W., Harris S.E. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988; 240:1534-1538. DOI 10.1126/science.2897716.

5. Casteleijn M., Richardson D. Engineering cells and proteins – creating pharmaceuticals. Eur. Pharm. Rev. 2014;19(4):12-19.

6. Cox K.M., Sterling J.D., Regan J.T. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 2006;24:1591-1597. DOI 10.1038/nbt1260.

7. Daniell H. Transgenic containment by maternal inheritance: effective or elusive. Proc. Natl. Acad. Sci. USA. 2007;1104:6879-6880. DOI 10.1073/pnas.0702219104.

8. Daniell H., Chebolu S., Kumar S., Singleton M., Falconer R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine. 2005;23:1779-1783. DOI 10.1016/j.vaccine.2004.11.004.

9. DeCosa B., Moar W., Lee S.B., Miller M., Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 2001;19:71-74. DOI 10.1038/83559.

10. Desai P.N., Shrivastava N., Padh H. Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnol. Adv. 2010;28:427-435. DOI 10.1016/j.biotechadv.2010.01.005.

11. Dufourmantel N., Pelissier B., Garçon F., Peltier G., Ferullo J.M., Tissot G. Generation of fertile transplastomic soybean. Plant Mol. Biol. 2004;55:479-489. DOI 10.1007/s11103-004-0192-4.

12. Fischer R., Schillberg S., Hellwig S., Twyman R.M., Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012;30:434-439. DOI 10.1016/j.biotechadv.2011.08.007.

13. Franklin S.E., Mayfield S.P. Prospects for molecular farming in the green algae Chlamydomonas. Curr. Opin. Plant Biol. 2004;7:159165. DOI 10.1016/j.pbi.2004.01.012.

14. Gelvin S.B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 2003;67(1):16-37. DOI 10.1128/MMBR.67.1.16-37.2003.

15. Gleba Y., Klimyuk V., Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2042-2048. DOI 10.1016/j.vaccine.2005.01.006.

16. Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 2007;18:134-141. DOI 10.1016/j.copbio.2007.03.002.

17. Haq T.A., Mason H.S., Clements J.D., Arntzen C.J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714-719. DOI 10.1126/science.7732379.

18. Hellwig S., Drossard J., Twyman R.M., Fischer R. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 2004; 22:1415-1422. DOI 10.1016/j.biotechadv.2011.08.007.

19. Howard J.A. Commercialization of biopharmaceutical and bioindustrial proteins from plants. Crop Sci. 2005;45:468-472. DOI 10.2135/cropsci2005.0468.

20. Huang T.-K., McDonald K.A. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J. 2009;45:168-184. DOI 10.1016/j.bej.2009.02.008.

21. Kaldis A., Ahmad A., Reid A., McGarvey B., Brandle J., Ma Sh., Jevnikar A., Kohalmi S.E., Menassa R. Highlevel production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol. J. 2013;11:535-545. DOI 10.1111/pbi.12041.

22. Lelivelt C., McCabe M., Newell C. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 2005;58:763-774. DOI 10.1007/s11103-005-7704-8.

23. Magnuson N.S., Linzmaier P.M., Reeves R., An G., Hay-Glass K., Lee J.M. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 1998;13:45-52. DOI 10.1006/prep.1998.0872.

24. Martinez C.A., Guilietti A.M., Talou R. Research advances in plantmade flavi-virus antigens. Biotechnol. Adv. 2012;30:1493-1505. DOI 10.1016/j.biotechadv.2012.03.004.

25. Mason H.S., Haq T.A., Clements J.D., Arntzen C.J. Edible vaccine protects mice against Echerichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B-gene. Vaccine. 1998;16:13361343. DOI 10.1016/S0264-410X(98)80020-0.

26. Mason H.S., Lam D.M., Arntzen C.J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA. 1992;89: 11745-11749.

27. Nagels B., Weterings K., Callewaert N., van Damme E.J.M. Production of plant made pharmaceuticals: from plant host to functional protein. Crit. Rev. Plant Sci. 2012;31:148-180. DOI 10.1080/ 07352689.2011.616075.

28. Permyakova N.V., Uvarova E.A., Deineko E.V. State of research in the field of the creation of plant vaccines for veterinary use. Russian Journal of Plant Physiology. 2015;62(1):23-38. DOI 10.1134/S1021443715010100.

29. Reinsing S., Lang D., Knight C. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. 2008;319:64-69. DOI 10.1126/science.1150646.

30. Reski R., Parsons J., Decker E.L. Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol. J. 2015;13(8):1191-1198. DOI 10.1111/pbi.12401.

31. Rosales-Mendoza S. Algae-Based Biopharmaceuticals. Springer, 2016. DOI 10.1007/978-3-319-32232-2.

32. Rosales-Mendoza S., Tello-Olea M.A. Carrot cells: a pioneering platform for biopharmaceuticals production. Mol. Biotechnol. 2015;57: 219-232. DOI 10.1007/s12033-014-9837-y.

33. Rybicki E.P. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 2010;8:620-637. DOI 10.1111/j.1467-7652.2010.00507.x.

34. Schelkunov S.N., Salyaev R.K., Pozdnyakov S.G., Rekoslavskaya N.I., Nesterov A.E. Immunogenecity of a novel, bivalent, plantbased oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol. Lett. 2006;28(13):959-967. DOI 10.1007/ s10529-006-9028-4.

35. Schiermeyer A., Schillberg S. Plant molecular pharming – pharmaceuticals for human health. Encyclopedia of Sustainability Science and Technology. Ed. R.A. Meyers. N. Y.: Springer, 2012;8126-8141.

36. Schillberg S., Raven N., Fischer R., Twyman R., Schiermeyer A. Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr. Pharm. Des. 2013;19:5531-5542.

37. Sourrouille C., Marshall B., Lienard D., Faye L. From Neanderthal to nanobiotech: From plant potions to pharming with plant factories. Ed. L. Faye, V. Gomord. Methods in Molecular Biology: Recombinant Proteins From Plants. Humana Press, a part of Springer Science+Buisness Media, 2009;1-23. DOI 10.1007/978-1-59745407-0_1.

38. Tacket C.O., Mason H.S., Losonsky G., Estes M.K., Arntzen C.J. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000;182:302-305. DOI 10.1086/315653.

39. Taunt H., Stoffels L., Purton S. Green biologics: The algal chloroplast as a platform for making biopharmaceuticals. Bioengineered. 2017. DOI 10.1080/21655979.2017.1377867.

40. Tekoah Y., Shulman A., Kizhner T., Ruderfer I., Fux L., Nataf Y., Bartfeld D., Ariel T., Gingis-Velitski S., Hanania U., Shaaltiel Y. Large-scale production of pharmaceutical proteins in plant cell culture – the protalix experience. Plant Biotechnol. J. 2015;13:11991208. DOI 10.1111/pbi.12428.

41. Tiwari S., Verma P.C., Singh P.K., Tuli R. Plants as bioreactors for the production of vaccines and antigens. Biotechnol. Adv. 2009;27:449467. DOI 10.1016/j.biotechadv.2009.03.006.

42. Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003;21:570-578. DOI 10.1016/j.tibtech.2003.10.002.

43. Weise A., Altmann F.M., Rodriguez-Franco M. High level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella delta-fuc-t and delta-xyl-t mutant. Plant Biotechnol. J. 2007;5:389-401. DOI 10.1111/j.14677652.2007.00248.x.

44. Yusibov V., Rabindran S. Resent progress in the development of plant-derived vaccines. Expert Rev. Vaccin. 2008;7:1173-1183. DOI 10.1586/14760584.7.8.1173.

45. Yusibov V., Streatfield S., Kushnir N. Clinical development of plant-produced recombinant pharmaceuticls. Hum. Vaccin. 2011;7(3):313-321. DOI 10.4161/hv.7.3.14207.


Просмотров: 234


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)