Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Plant expression systems for production of recombinant pharmaceutically important proteins

https://doi.org/10.18699/VJ17.322

Abstract

The market of pharmaceutically valuable proteins is the fastest growing segment of the economy. Most biopharmaceuticals have been obtained in mammalian and microorganism cells, but both systems have a number of disadvantages. Plant cells combine the advantages of the eukaryotic system of protein production and the simplicity and cheapness of the bacterial, and the use of plants for the production of recombinant proteins is an economically important and promising direction. The advantage of plant systems is the lower cost of cell cultivation. They are free from unwanted components, such as bacterial endotoxins, hyperglycosylated proteins produced by yeast, animal and human pathogens in cell cultures of transgenic animals. In addition, plants are higher eukaryotes, and therefore fullvalue folding and the formation of multimeric protein complexes occur in their cells, as well as a significant portion of post­translational modifications similar to those in mammalian cells. The currently developed plant expression systems for recombinant proteins are extremely diverse and number more than 100 different technologies based on different plant species, gene transfer methods, expression strategies, methods for the subsequent extraction of the target protein, etc. This is nuclear and plastid transformation, transient and stable expression during transformation using agrobacterial transport, bombardment or electroporation, cultivation of whole terrestrial or aquatic plants, plant tissues or suspension cell cultures as expression systems. The review examines the current state of research in the use of plant expression systems for the production of recombinant proteins for pharmaceuticals. The emphasis was placed on the advantages of plant cell cultures in comparison with other expression systems. Specific examples discuss promising plant systems for the production of recombinant proteins, such as transplastomic plants, moss and aquatic plant cultures, as well as suspension cultures of cells of higher plants. The current state of the market for recombinant proteins obtained using plant expression systems is considered. The prospects of creating plant (“edible”) vaccines based on genetically modified plants are discussed.

About the Authors

E. V. Deineko
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


A. A. Zagorskaya
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


References

1. Almaraz-Delgado A.L., Flores-Uribe J., Perez-Espana V.H., SalgadoManjarrez E., Badillo-Corona J.A. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express. 2014;4:57. DOI 10.1186/s13568-014-0057-4. PMID:25136510.

2. Apeler H., Peters J., Schroder W. Expression, purification, and pharmacological characterization of a recombinant aprotinin variant. Drug Res. 2004;54(8):483-497. DOI 10.1055/s-0031-1297003.

3. Arakawa T., Chong D.K.X., Langridge H.R. Efficacy of food plantbased oral cholera toxin B sununit vaccine. Nat. Biotechnol. 1998; 16:292-297. DOI 10.1038/nbt0398-292.

4. Boynton J.E., Gilham N.W., Harris S.E. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988; 240:1534-1538. DOI 10.1126/science.2897716.

5. Casteleijn M., Richardson D. Engineering cells and proteins – creating pharmaceuticals. Eur. Pharm. Rev. 2014;19(4):12-19.

6. Cox K.M., Sterling J.D., Regan J.T. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 2006;24:1591-1597. DOI 10.1038/nbt1260.

7. Daniell H. Transgenic containment by maternal inheritance: effective or elusive. Proc. Natl. Acad. Sci. USA. 2007;1104:6879-6880. DOI 10.1073/pnas.0702219104.

8. Daniell H., Chebolu S., Kumar S., Singleton M., Falconer R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine. 2005;23:1779-1783. DOI 10.1016/j.vaccine.2004.11.004.

9. DeCosa B., Moar W., Lee S.B., Miller M., Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 2001;19:71-74. DOI 10.1038/83559.

10. Desai P.N., Shrivastava N., Padh H. Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnol. Adv. 2010;28:427-435. DOI 10.1016/j.biotechadv.2010.01.005.

11. Dufourmantel N., Pelissier B., Garçon F., Peltier G., Ferullo J.M., Tissot G. Generation of fertile transplastomic soybean. Plant Mol. Biol. 2004;55:479-489. DOI 10.1007/s11103-004-0192-4.

12. Fischer R., Schillberg S., Hellwig S., Twyman R.M., Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012;30:434-439. DOI 10.1016/j.biotechadv.2011.08.007.

13. Franklin S.E., Mayfield S.P. Prospects for molecular farming in the green algae Chlamydomonas. Curr. Opin. Plant Biol. 2004;7:159165. DOI 10.1016/j.pbi.2004.01.012.

14. Gelvin S.B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 2003;67(1):16-37. DOI 10.1128/MMBR.67.1.16-37.2003.

15. Gleba Y., Klimyuk V., Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2042-2048. DOI 10.1016/j.vaccine.2005.01.006.

16. Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 2007;18:134-141. DOI 10.1016/j.copbio.2007.03.002.

17. Haq T.A., Mason H.S., Clements J.D., Arntzen C.J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714-719. DOI 10.1126/science.7732379.

18. Hellwig S., Drossard J., Twyman R.M., Fischer R. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 2004; 22:1415-1422. DOI 10.1016/j.biotechadv.2011.08.007.

19. Howard J.A. Commercialization of biopharmaceutical and bioindustrial proteins from plants. Crop Sci. 2005;45:468-472. DOI 10.2135/cropsci2005.0468.

20. Huang T.-K., McDonald K.A. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J. 2009;45:168-184. DOI 10.1016/j.bej.2009.02.008.

21. Kaldis A., Ahmad A., Reid A., McGarvey B., Brandle J., Ma Sh., Jevnikar A., Kohalmi S.E., Menassa R. Highlevel production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol. J. 2013;11:535-545. DOI 10.1111/pbi.12041.

22. Lelivelt C., McCabe M., Newell C. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 2005;58:763-774. DOI 10.1007/s11103-005-7704-8.

23. Magnuson N.S., Linzmaier P.M., Reeves R., An G., Hay-Glass K., Lee J.M. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 1998;13:45-52. DOI 10.1006/prep.1998.0872.

24. Martinez C.A., Guilietti A.M., Talou R. Research advances in plantmade flavi-virus antigens. Biotechnol. Adv. 2012;30:1493-1505. DOI 10.1016/j.biotechadv.2012.03.004.

25. Mason H.S., Haq T.A., Clements J.D., Arntzen C.J. Edible vaccine protects mice against Echerichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B-gene. Vaccine. 1998;16:13361343. DOI 10.1016/S0264-410X(98)80020-0.

26. Mason H.S., Lam D.M., Arntzen C.J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA. 1992;89: 11745-11749.

27. Nagels B., Weterings K., Callewaert N., van Damme E.J.M. Production of plant made pharmaceuticals: from plant host to functional protein. Crit. Rev. Plant Sci. 2012;31:148-180. DOI 10.1080/ 07352689.2011.616075.

28. Permyakova N.V., Uvarova E.A., Deineko E.V. State of research in the field of the creation of plant vaccines for veterinary use. Russian Journal of Plant Physiology. 2015;62(1):23-38. DOI 10.1134/S1021443715010100.

29. Reinsing S., Lang D., Knight C. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. 2008;319:64-69. DOI 10.1126/science.1150646.

30. Reski R., Parsons J., Decker E.L. Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol. J. 2015;13(8):1191-1198. DOI 10.1111/pbi.12401.

31. Rosales-Mendoza S. Algae-Based Biopharmaceuticals. Springer, 2016. DOI 10.1007/978-3-319-32232-2.

32. Rosales-Mendoza S., Tello-Olea M.A. Carrot cells: a pioneering platform for biopharmaceuticals production. Mol. Biotechnol. 2015;57: 219-232. DOI 10.1007/s12033-014-9837-y.

33. Rybicki E.P. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 2010;8:620-637. DOI 10.1111/j.1467-7652.2010.00507.x.

34. Schelkunov S.N., Salyaev R.K., Pozdnyakov S.G., Rekoslavskaya N.I., Nesterov A.E. Immunogenecity of a novel, bivalent, plantbased oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol. Lett. 2006;28(13):959-967. DOI 10.1007/ s10529-006-9028-4.

35. Schiermeyer A., Schillberg S. Plant molecular pharming – pharmaceuticals for human health. Encyclopedia of Sustainability Science and Technology. Ed. R.A. Meyers. N. Y.: Springer, 2012;8126-8141.

36. Schillberg S., Raven N., Fischer R., Twyman R., Schiermeyer A. Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr. Pharm. Des. 2013;19:5531-5542.

37. Sourrouille C., Marshall B., Lienard D., Faye L. From Neanderthal to nanobiotech: From plant potions to pharming with plant factories. Ed. L. Faye, V. Gomord. Methods in Molecular Biology: Recombinant Proteins From Plants. Humana Press, a part of Springer Science+Buisness Media, 2009;1-23. DOI 10.1007/978-1-59745407-0_1.

38. Tacket C.O., Mason H.S., Losonsky G., Estes M.K., Arntzen C.J. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000;182:302-305. DOI 10.1086/315653.

39. Taunt H., Stoffels L., Purton S. Green biologics: The algal chloroplast as a platform for making biopharmaceuticals. Bioengineered. 2017. DOI 10.1080/21655979.2017.1377867.

40. Tekoah Y., Shulman A., Kizhner T., Ruderfer I., Fux L., Nataf Y., Bartfeld D., Ariel T., Gingis-Velitski S., Hanania U., Shaaltiel Y. Large-scale production of pharmaceutical proteins in plant cell culture – the protalix experience. Plant Biotechnol. J. 2015;13:11991208. DOI 10.1111/pbi.12428.

41. Tiwari S., Verma P.C., Singh P.K., Tuli R. Plants as bioreactors for the production of vaccines and antigens. Biotechnol. Adv. 2009;27:449467. DOI 10.1016/j.biotechadv.2009.03.006.

42. Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003;21:570-578. DOI 10.1016/j.tibtech.2003.10.002.

43. Weise A., Altmann F.M., Rodriguez-Franco M. High level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella delta-fuc-t and delta-xyl-t mutant. Plant Biotechnol. J. 2007;5:389-401. DOI 10.1111/j.14677652.2007.00248.x.

44. Yusibov V., Rabindran S. Resent progress in the development of plant-derived vaccines. Expert Rev. Vaccin. 2008;7:1173-1183. DOI 10.1586/14760584.7.8.1173.

45. Yusibov V., Streatfield S., Kushnir N. Clinical development of plant-produced recombinant pharmaceuticls. Hum. Vaccin. 2011;7(3):313-321. DOI 10.4161/hv.7.3.14207.


Review

Views: 1888


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)