ОПУШЕНИЕ ЛИСТА У КАРТОФЕЛЯ Solanum tuberosum: МОРФОЛОГИЯ, ФУНКЦИОНАЛЬНАЯ РОЛЬ И МЕТОДЫ ИССЛЕДОВАНИЯ
https://doi.org/10.18699/VJ18.327
Аннотация
Опушение – один из важных биотических факторов защиты растений от повреждающих факторов среды. Интерес к изучению опушения картофеля связан преимущественно с тем, что оно играет заметную роль в защите растений от насекомых-вредителей. Обзор посвящен функциональной роли и генетическому контролю опушения листьев у картофеля. Рассматриваются морфологические особенности опушения картофеля, которое состоит из несекретирующих и секретирующих трихом нескольких типов. Соотношение трихом разных типов у разных видов картофеля отличается большим разнообразием, характерным в первую очередь для дикорастущих видов. Опушение может служить классифицирующим признаком. Описана роль трихом как «фабрик» вторичных метаболитов картофеля, среди которых сложные эфиры сахарозы и терпеновые производные, служащие репеллентами насекомых. Трихомы также синтезируют полифенолоксидазу, которая за счет окисления фенолов приводит к синтезу метаболитов, вредных для насекомых. Представлена информация об известных в настоящее время генах, ответственных за контроль опушения. Это гены, участвующие в формировании комплекса MYB-bHLH-WD40, который контролирует процессы дифференцировки и развития трихом у растений. У картофеля белки этого комплекса изучаются прежде всего в связи с регуляцией биосинтеза антоцианов. Фундаментальной основой для идентификации генов, контролирующих опушение картофеля, в настоящее время являются данные о последовательности полного генома картофеля. Это позволяет на основе анализа гомологии с генами модельных организмов идентифицировать гены-кандидаты, контролирующие важные признаки у картофеля. Работы в этом направлении уже ведутся, однако они находятся на начальном этапе. В заключительном разделе обзора описаны методы фенотипирования трихом, основанные на визуальном анализе микроскопических изображений (полученных с помощью как оптических, так и электронных микроскопов). Показана актуальность разработки новых высокопроизводительных подходов к изучению морфологии этого признака у картофеля.
Об авторах
А. В. ДорошковРоссия
Д. А. Афонников
Россия
Список литературы
1. An L., Zhou Zh., Yan A., Gan Y. Progress on trichome development regulated by phytohormone signaling. Plant Signaling Behav. 2011; 6(12):1959-1962. DOI 10.4161/psb.6.12.18120.
2. Antonious G.F. Production and quantification of methyl ketones in wild tomato accessions. J. Environ. Sci. Health. Pt. B. 2001;36(6):835848. DOI 10.1081/PFC-100107416.
3. Araus J.L., Cairns J.E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19(1):52-61. DOI 10.1016/j.tplants.2013.09.008.
4. Avé D.A., Tingey W.M. Phenolic constituents of glandular trichomes on Solanum berthaultii and S. polyadenium. Am. Potato J. 1986; 63(9):473-480. DOI 10.1007/BF02852942.
5. Beale M.H., Birkett M.A., Bruce T.J., Chamberlain K., Field L.M., Huttly A.K., Martin J.L., Parker R., Phillips A.L., Pickett J.A., Prosser I.M., Shewry P.R., Smart L.E., Wadhams L.J., Woodcock C.M., Zhang Y. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA. 2006;103(27):10509-10513. DOI 10.1073/pnas.0603998103.
6. Bonierbale M.W., Plaisted R.L., Pineda O., Tanksley S.D. QTL analysis of trichome-mediated insect resistance in potato. Theor. Appl. Genet. 1994;87(8):973-987. DOI 10.1007/BF00225792.
7. Cardoso M.Z. Herbivore handling of a Plant’s trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae). Neotrop. Entomol. 2008;37(3):247-252. DOI 10.1590/S1519-566X2008000300002.
8. Channarayappa C., Shivashankar G., Muniyappa V., Frist R.H. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can. J. Bot. 1992;70(11):2184-2192. DOI 10.1139/b92-270.
9. Cho K., Cho K.S., Sohn H.B., Ha I.J., Hong S.Y., Lee H., Kim Y.M., Nam M.H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot. 2016; 67(5):1519-1533. DOI 10.1093/jxb/erv549.
10. Cobb J.N., De Clerck G., Greenberg A., Clark R., McCouch S. Nextgeneration phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 2013;126(4):867887. DOI 10.1007/s00122-013-2066-0.
11. Doroshkov А.V., Genaev M.А., Afonnikov D.A. A protocol for analysis of the quantitative characteristics of leaf pubescence in potato. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016а;20(6):863-868. DOI 10.18699/VJ16.218. (in Russian)
12. Doroshkov А.V., Simonov A.V., Safonova A.D., Afonnikov D.A., Lihenko N.E., Kolchanov N.A. Estimation of quantitative characteristics of potato leaf hairiness using microscopic image analysis. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC. 2016б;(30):12-14. (in Russian)
13. Duke S.O., Canel C., Rimando A.M., Telle M.R., Duke M.V., Paul R.N. Current and potential exploitation of plant glandular trichome productivity. Adv. Bot. Res. 2000;31:121-151. DOI 10.1016/S00652296(00)31008-4.
14. Edmonds J.M. Epidermal hair morphology in Solanum L. section Solanum. Bot. J. Linn. Soc. 1982;85(3):153-167. DOI 10.1111/j.10958339.1982.tb02583.x.
15. Ehleringer J., Mooney H.A. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oeocologia. 1978;37(2):183200. DOI 10.1007/BF00344990.
16. Fasulati S.R., Ivanova O.V., Rogozina E.V. Complex resistance to Colorado potato beetle, 28-spotted potato ladybird, and potato golden cyst nematode in potato. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2011;10(1):14-17. (in Russian)
17. Flanders K.L., Hawkes J.G., Radcliffe E.B., Lauer F.I. Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica. 1992;61(2):83-111. DOI 10.1007/BF00026800.
18. Fridman E., Wang J., Iijima Y., Froehlich J.E., Gang D.R., Ohlrogge J., Pichersky E. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell. 2005;17(4):1252-1267. DOI 10.1105/tpc.104.029736.
19. Gang D.R., Wang J., Dudareva N., NamK.H., Simon J.E., Lewinsohn E., Pichersky E. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 2001;125(2):539-555. DOI 10.1105/tpc.104.029736.
20. Genaev M.A., Doroshkov A.V., Pshenichnikova T.A., Kolchanov N.A., Afonnikov D.A. Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique. Planta. 2012;236(6):1943-1954. DOI 10.1007/s00425-0121751-6.
21. Gershenzon J., Dudareva N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007;3(7):408-414. DOI 10.1038/nchembio.2007.5.
22. Gibson R.W. Glandular hairs providing resistance to aphids in certain wild potato species. Ann. Appl. Biol. 1971;68(2):113-119. DOI 10.1111/j.1744-7348.1971.tb06448.x.
23. Gibson R.W., Pickett J.A. Wild potato repels aphids by release of aphid alarm pheromone. Nature. 1983;302(5909):608-609. DOI 10.1038/302608a0.
24. Gibson R.W., Turner R.H. Insect-trapping hairs on potato plants. PANS. 1977;23(3):272-277.
25. GlasJ.J., Schimmel B.C., Alba J.M., Escobar-Bravo R., Schuurink R.C., Kant M.R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 2012;13(12): 17077-17103. DOI 10.3390/ijms131217077.
26. Gregory P., Tingey W.M., Ave D.A., Bouthyette P.Y. Potato glandular trichomes: a physicochemical defense mechanism against insects. In: Green M.B., Hedin P.A. (Eds.). Natural Resistance of Plants to Rests. Vol. 296. Washington City: Am. Chem. Soc., 1986;160-167. DOI 10.1021/bk-1986-0296.ch013.
27. Hauser M.T. Molecular basis of natural variation and environmental control of trichome patterning. Front. Plant Sci. 2014;5:320. DOI 10.3389/fpls.2014.00320.
28. Jin J.P., Tian F., Yang D.C., Meng Y.Q., Kong L., Luo J.C., Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1): D1040-D1045. DOI 10.1093/nar/gkw982.
29. Jukanti A. Polyphenol Oxidases (PPOs) in Plants. Singapore: Springer, 2017. DOI 10.1007/978-981-10-5747-2.
30. Kang J.H., Shi F., Jones A.D., Marks M.D., Howe G.A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 2010;61(4):1053-1064. DOI 10.1093/jxb/erp370.
31. Kennedy G.G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 2003;48(1):51-72. DOI 10.1146/annurev.ento.48.091801.112733.
32. Kowalski S.P., Eannetta N.T., Hirzel A.T., Steffens J.C. Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol. 1992;100(2):677-684. DOI 10.1104/pp.100.2.677.
33. Kroumova A.B., Wagner G.J. Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta. 2003;216(6):1013-1021. DOI 10.1007/s00425-002-0954-7.
34. Li L., Steffens J.C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 2002;215(2):239-247. DOI 10.1007/s00425-002-0750-4.
35. Li S. Transcriptional control of flavonoid biosynthesis. Plant Signal. Behav. 2014;9(1):27522. DOI 10.4161/psb.27522.
36. Liakopoulos G., Nikolopoulos D., Klouvatou A., Vekkos K.-A., Manetas Y., Karabourniotis G. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann. Bot. 2006;98(1):257-265. DOI 10.1093/aob/mcl097.
37. Liu J., Xia K.-F., Zhu J.-C., Deng Y.-G., Huang X.-L., Hu B.-L., Xu X., Xu Z.-F. The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant Cell Physiol. 2006; 47(9):1274-1284. DOI 10.1093/pcp/pcj097.
38. Luckwill L. The Genus Lycopersicon: Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes. Aberdeen, Scotland: Aberdeen Univ. Press, 1943.
39. Lyshede O.B. The ultrastructure of the glandular trichomes of Solanum tuberosum. Ann. Bot. 1980;46(5):519-526. DOI 10.1093/oxfordjournals.aob.a085949.
40. Maharijaya A., Vosman B. Managing the Colorado potato beetle; the need for resistance breeding. Euphytica. 2015;204 (3):487-501. DOI 10.1007/s10681-015-1467-3.
41. McCauley M.M., Evert R.F. Morphology and vasculature of the leaf of potato (Solanum tuberosum). Am. J. Bot. 1988;75(3):377-390.
42. Morales F., Abadia A., Abadia J., Montserrat G., Gil-Pelegrin E. Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees. 2002;16(7): 504-510. DOI 10.1007/s00468-002-0195-1.
43. Neal J.J., Plaisted R.L., Tingey W.M. Feeding behavior and survival of Colorado potato beetle, Leptinotarsa decemlineata (Say), larvae on Solanum berthaultii Hawkes and an F6 S. tuberosum L. × S. berthaultii hybrid. Am. Potato J. 1991;68(10):649-658. DOI 10.1007/BF02853740.
44. Neal J.J., Tingey W.M., Steffens J.C. Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J. Chem. Ecol. 1990;16(2):487-497. DOI 10.1007/BF01021780.
45. Plaisted R.L., Tingey W.M., Steffens J.C. The germplasm release of NYL 235-4, a clone with resistance to the Colorado potato beetle. Am. Potato J. 1992;69(12):843-846. DOI 10.1007/BF02854192.
46. Pott C., McLoughlin S., Wu S., Friis E.M. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: Mechanical defence against herbivorous arthropods. Rev. Palaeobot. Palynol. 2012;169: 48-60. DOI 10.1016/j.revpalbo.2011.10.005.
47. Payyavula R.S., Singh R.K., Navarre D.A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J. Exp. Bot. 2013;64(16):5115-5131. DOI 10.1093/jxb/ert303.
48. Radchenko E.E. Aphid resistance in potato. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(1):74-82. DOI 10.18699/VJ17.225. (in Russian)
49. Schilmiller A.L., Last R.L., Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 2008; 54(4):702-711. DOI 10.1111/j.1365-313X.2008.03432.x.
50. Shepherd R.W., Bass W.T., Houtz R.L., Wagner G.J. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell. 2005;17(6):1851-1861. DOI 10.1105/tpc.105.031559.
51. Simmons A.T., Gurr G.M. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric. For. Entomol. 2005;7(4):265-276. DOI 10.1111/j.1461-9555.2005.00271.x.
52. Sizova M.A. Potato leaf pubescence as a taxonomic character. Trudy po prikladnoy botanike, genetike i selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1965;37(3):109-128. (in Russian)
53. Strygina K.V., Khlestkina E.K. Anthocyanin synthesis in potato (Solanum tuberosum L.): genetic markers for smart breeding. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(1):37-49. DOI 10.15389/agrobiology.2017.1.37rus. (in Russian)
54. Tai H.H., Worrall K., Pelletier Y., De Koeyer D., Calhoun L.A. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. J. Agric. Food Chem. 2014;62(36):9043-9055. DOI 10.1021/jf502508y.
55. The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475(7355):189. DOI 10.1038/nature10158.
56. Thipyapong P., Joel D.M., Steffens J.C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 1997;113(3): 707-718. DOI 10.1104/pp.113.3.707.
57. Tian D., Tooker J., Peiffer M., Chung S.H., Felton G.W. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta. 2012;236(4):1053-1066. DOI 10.1007/s00425-012-1651-9.
58. Tingey W.M., Laubengayer J.E. Defense against the green peach aphid and potato leafhopper by glandular trichomes of Solanum berthaultii. J. Econ. Entomol. 1981;74(6):721-725. DOI 10.1093/jee/74.6.721.
59. Tingey W.M., Plaisted R.L., Laubengayer J.E., Mehlenbacher S.A. Green peach aphid resistance by glandular trichomes in Solanum tuberosum × S. berthaultii hybrids. Am. Potato J. 1982;59(6):241-251. DOI 10.1007/BF02856560.
60. Tissier A. Trichome specific expression: promoters and their applications. In: Çiftçi Y.O. (Ed.). Transgenic Plants – Advances and Limitations. InTech, 2012;353-378.
61. Treutter D. Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 2006;4(3):147-157. DOI 10.1007/s10311-0060068-8.
62. Wagner G.J. Secreting glandular trichomes: more than just hairs. Plant Physiol. 1991;96(3):675-679. DOI 10.1104/pp.96.3.675.
63. Wagner G.J., Wang E., Shepherd R.W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004;3(11):3-11. DOI 10.1093/aob/mch011.
64. Wang E., Gan S., Wagner G.J. Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J. Exp. Bot. 2002;53(376):1891-1897. DOI 10.1093/jxb/erf054.
65. Wang E., Wang R., DeParasis J., Loughrin J.H., Gan S., Wagner G.J. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 2001;19(4):371-374. DOI 10.1038/86770.
66. Wang R., Zhao P., Kong N., Lu R., Pei Y., Huang C., Ma H., Chen Q. Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes. 2018;9(1):54. DOI 10.3390/genes9010054.
67. Yu H., Kowalski S.P., Steffens J.C. Comparison of polyphenol oxidase expression in glandular trichomes of Solanum and Lycopersicon species. Plant Physiol. 1992;100(4):1885-1890. DOI 10.1104/pp.100.4.1885.