1. Afonnikov D.A., Genaev M.A., Doroshkov A.V., Komyshev E.G., Pshenichnikova T.A. Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments. Russ. J. Genet. 2016;52(7):688-701. https://doi.org/10.1134/S1022795416070024.
2. Amagai Y., Burdenyuk-Tarasevych L.A., Goncharov N.P., Watanabe N. Microsatellite mapping of the loci for false glume and semi-compact spike in Triticum L. Genet. Resour. Crop Evol. 2017;64:2105-2115. https://doi.org/10.1007/s10722-017-0500-x.
3. Boden S.A., Cavanagh C., Cullis B.R., Ramm K., Greenwood J., Finnegan E.J., Trevaskis B., Swain S.M. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants. 2015;1:14016. https://doi.org/10.1038/nplants.2014.16.
4. Dobrovolskaya O., Pont C., Sibout R., Martnek P., Badaeva E., Murat F., Chosson A., Watanabe N., Prat E., Gautier N., Gautier V., Poncet C., Orlov Yu., Krasnikov A., Berges H., Salona E., Laikova L., Salse J. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 2015;167(1):189-199. https://doi.org/10.1104/pp.114.250043.
5. Fljaksberger K.A. Wheats - Genus Triticum L. pr. р. Kulturnaya flora SSSR. T. 1. Khlebnye zlaki. [Cultural flora of the USSR. Vol 1. Cereals.]. Moscow; Leningrad: Sel’hozgiz Publ., 1935;19-434. (in Russian)
6. Genaev M.A., Doroshkov A.V., Pshenichnikova T.A., Morozova E.V., Simonov A.V., Afonnikov D.A. Informational support of the breeding experiment in wheat in the WheatPGE system. Matematicheskaya biologiya i bioinformatika = Mathematical Biology and Bioinformatics. 2012;7(2):410-424. (in Russian)
7. Goncharov N.P. Sravnitelnaya genetika pshenits i ikh sorodichey [Comparative genetics of wheat and their relatives]. Novosibirsk: “Geo” Publ., 2012;523. (in Russian)
8. Jantasuriyarat C., Vales M.I., Watson C., Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004;108(2):261-273. https://doi.org/10.1007/s00122-003-1432-8.
9. Konopatskaia I., Vavilova V., Blinov A., Goncharov N.P. Spike morphology genes in wheat species (Triticum L.). Proc. Latv. Acad. Sci. Sect. B. 2016;70(6):345-355. https://doi.org/10.1515/prolas-2016-0053.
10. Nalam V.J., Vales M.I., Watson C., Johnson E.B., Riera-Lizarazu O. Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007;116(1):135-145. https://doi.org/10.1007/s00122-007-0653-7.
11. Sood S., Kuraparthy V., Bai G., Gill B.S. The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploidy wheat, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet. 2009;119(2):341-351. https://doi.org/10.1007/s00122-009-1043-0.
12. Sreenivasulu N., Schnurbusch T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 2012;17(2):91-101. https://doi.org/10.1016/j.tplants.2011.11.003.
13. Strange H., Zwiggelaar R., Sturrock C., Mooney S.J., Doonan J.H. Automatic estimation of wheat grain morphometry from computed tomography data. Funct. Plant Biol. 2015;42(5):452-459. https://doi.org/10.1071/FP14068.
14. Youssef H.M., Mascher M., Ayoub M.A., Stein N., Kilian B., Schnurbusch T. Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet. Resour. Crop Evol. 2017;64(5):843-853. https://doi.org/10.1007/s10722-017-0504-6.