БИОХИМИЧЕСКИЙ СОСТАВ И ТЕХНОЛОГИЧЕСКАЯ ОЦЕНКА ЗЕРНА ИНТРОГРЕССИВНЫХ ФОРМ ОЗИМОЙ МЯГКОЙ ПШЕНИЦЫ С УЧАСТИЕМ РАЗЛИЧНЫХ ВИДОВ Triticum и Aegilops
https://doi.org/10.18699/VJ18.371
Аннотация
Для создания стрессоустойчивых, продуктивных и качественных сортов пшеницы нередко используется генетическое разнообразие диких и культурных сородичей – различных видов, относящихся к родам Triticum и Aegilops. Ранее с участием образцов Triticum militinae, T. timopheevii, T. kiharae, Aegilops cylindrical и Ae. triaristata были созданы и отобраны по устойчивости и урожайности интрогрессивные формы озимой мягкой пшеницы. Целью настоящей работы стала оценка биохимического состава и технологических свойств зерна данных форм. Анализ муки по содержанию клейковины методом ИСО выявил уровень изменчивости от 28.5 % для формы Эритроспермум 350 × T. militinae до 39.6 % для генотипа Жетысу × T. militinae. При этом качество клейковины первой группы (класс «сильная») выявлено только для генотипов Эритроспермум 350 × T. militinae и (Безостая 1 × T. militinae) × T. militinae. По физическим свойствам муки и теста интрогрессивные формы варьируют по разжижению теста от 80 до 170 е. ф., т. е. на уровне «филлера» и «слабой» пшеницы, с лучшим значением как по разжижению, так и по валориметрической оценке для генотипов Безостая 1 × Ae. triaristata и Эритроспермум 350 × T. militinae (80 ед. разжижения, 49 ед. фаринографа и 80–45 е. ф. соответственно). Хлебопекарная оценка показывает, что из муки зерна интрогрессивных форм выпекается хлеб объемом, сопоставимым с сортами, в том числе выше сортов-стандартов Алмалы (720–760 мл) и Карахан (800 мл) по внешнему виду, пористости хлеба и общей хлебопекарной оценке. По твердозерности дикие сородичи и интрогрессивные формы характеризовались в основном как средне- и твердозерные (52–93 ед. SKCS). Таким образом, по технологической оценке хлебопекарного типа изученные интрогрессивные формы относятся в основном к классам «ценная» и «филлер», по силе муки и объему хлеба – к классу «слабая», при прогнозе по составу ВМС глютенина и наличию транслокации 1В/1R – к классу «сильная».
Об авторах
А. И. АбугалиеваКазахстан
Алмалыбак
Т. В. Савин
Казахстан
Алмалыбак
Список литературы
1. Abugaliyeva A., Chudinov V., Morgounov A., Kozhakhmetov K. Using wild relatives for creating disease-resistant spring wheat varieties. Proc. 13th Int. Wheat Genetics Symposium. Austria, Tulln, 23–28 April, 2017;217.
2. Abugalieva A.I., Peña-Bautista R.J. Grain quality of spring and winter wheat in Kazakhstan. Asian Australas. J. Plant Sci. Biotechnol. 2010;4:87-90.
3. Alvarez J.B., Guzman C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor. Appl. Genet. 2018;131:225. DOI 10.1007/S00122-017-3042-x.
4. Aykut Tonk F., Ílker E., Tosun M. A study to incorporate high protein content from tetraploid wheat (T. turgidum dicoccoides) to hexaploid wheat (T. aestivum vulgare). Turk. J. Field Crops. 2010;15(1):69-72.
5. Brown-Guedira G.L., Guedira M., Fritz A.K., Martin T.J., Chung O.K., Lockhart G.L., Seabourn B.W., Gill B.S., Cox T.S. Notice of release of KS04WGRC49 hard winter wheat germ plasm with unique glutenin and gliadin proteins. Annu. Wheat Newslett. 2005;51:190.
6. Cox T.S., Bequette R.K., Bowden R.L., Sears R.G. Grain yield and breadmaking quality of wheat lines with the leaf rust resistance gene Lr41. Crop Sci. 1997;37:154-161.
7. Cox T.S., Sears R.G., Bequette R.K. Use of winter wheat × Triticum tauschii backcross populations for germplasm evaluation. Theor. Appl. Genet. 1995a;90:571-577.
8. Cox T.S., Sears R.G., Bequette R.K., Martin T.J. Germplasm enhancement in winter wheat × Triticum tauschii backcross populations. Crop Sci. 1995b;35:913-919.
9. Cox T.S., Wu J., Wang S., Cai J., Zhong Q., Fu B. Comparing two approaches for introgression of germplasm from Aegilops tauschi into common wheat. Crop J. 2017;5:355-362. DOI 10.1016/j.cj.2017.05.006.
10. Eagles H.A., McLean R.B., Eastwood R.F. Appelbee M.-J., Cane K., Martin P.J., Wallwork H. High-yielding lines of wheat earring
11. Gpc-Bl adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci. 2014;65(9):854-861. DOI 10.1071/cpl4106.
12. Eggert K., Wieser H., Pawelzik E. The influence of Fusarium infection and growing location on the quantitative protein composition of (part I) emmer (Triticum dicoccum). Eur. Food Res. Technol. 2010; 230:837-847.
13. Gill B.S., Friebe B., Raupp W.J., Wilson D.L., Cox T.S., Sears R.G., Brown-Guedira G.L., Fritz A.K. Wheat Genetics Resource Center: the first 25 years. Adv. Agron. 2006:89:73-136. Hsam S.L.K., Kieffer R., Zeller F.J. Significance of Aegilops tauschii glutenin genes on bread-making properties of wheat. Cereal Chem. 2001;78:521-525.
14. Hussein H.A., Ebtissam H.A.H., El-Sayed O.E., Al-Ansary A.M.F., Khatab S.A., Sally A.A.R. Inter specific crosses and marker assisted selection for improving the nutritional value of Egyptian wheat cultivars. Int. J. Agric. Res. 2014;9(3):119-135. DOI 10.3923/ijar.2014.113.135.
15. Imtiaz M., Ogbonnaya F.C., Oman J., van Ginkel M. Characterization of QTLs controlling genetic variation for pre-harvest sprouting in synthetic backcross derived wheat lines. Genetics. 2008;178:1725-1736.
16. Khlestkina E.K., Pshenichnikova T.A., Usenko N.I., Otmahova Yu.S. Prospective applications of molecular genetic approaches to control technological properties of wheat grain in the context of the “grain – flour – bread” chain. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):511527. (in Russian)
17. Klindworth D.L., Hareland G.A., Elias E.M., Faris J.D., Chao S., Xu S.S. Agronomic and quality characteristics of two new sets of Langdon durum–wild emmer wheat chromosome substitution lines. J. Cereal Sci. 2009;50:29-35. DOI 10.1016/j.jcs.2009.02.003.
18. Kozhahmetov K.K., Abugalieva A.I. Using gene fund of wild relatives for common wheat improvement. Int. J. Biol. Chem. 2014;41(2): 41-43.
19. Kozhakhmetov K., Abugalieva A.I. Selektsionnoe dostizhenie: pshenitsa myagkaya ozimaya “Erpreudo-24” [Breeding achievement: common winter wheat “Erpreudo-24”]. Patent RF, no. 784, 2017. (in Russian)
20. Kozhakhmetov K., Abugalieva A.I., Bashabaeva B.М. Selektsionnoe dostizhenie: pshenitsa myagkaya ozimaya “Preffer-22” Breeding achievement: common winter wheat “Erpreudo-22”]. Patent RF, no. 783, 2017. (in Russian)
21. Kozhakhmetov K., Abugalieva A.I., Savin T.V., Bashabaeva B.М. Sposob sozdaniya samofertil’nykh alloplazmaticheskikh euploidnykh i aneuploidnykh liniy myagkoy pshenitsy [Method of creating selffertile alloplasmatic euploid and aneuploid common wheat lines]. Patent RF, no. 31891, 2017. (in Russian)
22. Kunert A., Naz A.A., Dedeck O., Pillen K., Leon J. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor. Appl. Genet. 2007;115:683-695.
23. Lagudah E.S., Macritchie P., Halloran G.M. The influence of high-molecular-weight subunits of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. J. Cereal Sci. 1987;5:129-138.
24. Lan X.J., Yen C. An amphidiploid derived from a Chinese landrace of tetraploid wheat, Ailanmai, crossed with Aegilops tauschii native to China with reference to its utilization in wheat breeding. J. Sichuan Agric. Univ. 1992;10:581-585.
25. Li J., Wan U.S., Yang W.Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 2014;52:735-742.
26. Mackie A.M., Sharp P.J., Lagudah E.S. The nucleotide and derived amino acid sequence of a HMW-glutenin gene from Triticum tauschii and comparison with those from the D-genome of bread wheat. J. Cereal Sci. 1996;24:73-78.
27. Mishra V.K., Gupta P.K., Arun В., Chand R., Vasistha N.K., Vishwakarma M.K., Yadav P.S., Joshi A.K. Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted back-cross breeding. J. Plant Breed. Crop Sci. 20l5;7(8):292-300. DOI I0.5897/JPBCS2015.0514.
28. Morgunov A.I., Gomez-Becerra H.F., Abugalieva A.I., Dzhunusova M., Yessimbekova M.A., Muminjanov H., Zelenskiy Y., Ozturk L., Cakmak Y. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica. 2007;155:193-203.
29. Nurpeissov M., Abugaliyeva A., Langdon T. Genetic identification of Kazakhstan OAT varieties. Biosci. Biotechnol. Res. Asia. 2015; 12(3):2227-2233. DOI 10.13005/bbra/1895.
30. Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A., Kazi A.G., Xu S.S., Gosman N., Lagudah E.S., Bonnett D., Sorrells M.E., Tsujimoto H. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed. Rev. 2013;37:35-122. DOI 10.1002/9781118497869.ch2.
31. Peruanskiy Yu.V., Abugalieva A.I., Savin V.N. Metody biokhimicheskoy otsenki kollektsionnogo i selektsionnogo materiala. Pod red. Yu.V. Peruanskogo [Peruanskiy Yu.V. (Ed.). Methods for biochemical evaluation of collection and breeding material]. Almaty, 1996. (in Russian)
32. Peruanskiy Yu.V., Abugalieva A.I., Tazhibaeva T.L. Sposob opredeleniya ustoychivosti genotipov pshenitsy k stressovym faktoram [Method for determining the resistance of wheat genotypes to stress factors]. Patent of the Kazakhstan Republic no. 8174, 1999. (in Kazakhstan)
33. Savin V.N., Abugaliev I.A., Abugalieva A.I. Analytical research optimization in agriculture. Doklady Rossiyskoy Akademii Selskokhozyaystvennykh Nauk = Proceedings of the Russian Academy of Agricultural Sciences. 1998;2:13-15. (in Russian)
34. Savin T.V., Abugaliyeva A.I., Chakmak I., Kozhakhmetov K.К. Mineral composition of wild relatives and introgressive forms in wheat selection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):88-96. (in Russian)
35. Savin T.V., Abugalieva A.I., Kozhakhmetov K.К. Study of wild wheat relatives with regard to Fe and Zn contents with reference to cultivated forms and their hybrids. Rol’ Vavilovskoy kollektsii geneticheskikh resursov rasteniy v menyayushchemsya mire: Sbornik statey mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the International Scientific and Practical Conference “Role of the Vavilov Collection of Plant Genetic Resources in the Changing World”]. St. Petersburg, 2009;220-224. (in Russian) Shavrukov Yu., Suchecki R., Eliby S., Abugalieva A., Kenenbaev S.,
36. Langridge P. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC Plant Biol. 2014;14:258. DOI 14712229/14/258.
37. Shchukina L.V., Chistyakova A.K., Morozova E.V., Pshenichnikova T.A., Simonov A.V. Influence of introgressions from wild relatives to common wheat on the variation in technological parameters of grain and flour. Doklady i soobshcheniya XI Mezhdunarodnoy genetiko-selektsionnoy shkoly-seminara ‘‘Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya genetiki, epigenetiki, selektsii i semenovodstva sel’skohozyaystvennyh kul’tur’’ [Proceedings of the 11th Int. Genetic and Breeding School “Current state and top directions in crop genetics, epigenetics, breeding, and seed farming”]. Novosibirsk, 2012;304-311. (in Russian)
38. Sinitsyn S.S., Zelova L.A. Mass-scale double assay of wheat flour strength in grain weights from 0.5 to 0.15 g. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences 1978;3:39-44. (in Russian)
39. Tabbita F., Lewis S., Vouilloz J.P., Ortega M.A., Kade M., Abbate P.E., Barneix A.J. Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed. 2013;132:48-52. DOI 10.1111/pbr.12011.
40. Tang Y.I., Yang W.Y., Tian J.C., Li J., Chen F. Effect of HMW-GS 6+8 and 1.5+10 from synthetic hexaploid wheat on wheat quality traits. Agric. Sci. China. 2008;7:1161-1171.
41. Turuspekov Y., Sariev B., Chudinov V., Sereda G., Tokhetova L., Ortaev A., Tsygankov V., Doszhanov M., Volis S., Abugalieva S. Genotype × environment interaction patterns for grain yield of spring barley in different regions of Kazakhstan. Russ. J. Genetics. 2013; 49(2):196-205.
42. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314:1298-1301.
43. Vishwakarma M.K., Mishra V.K., Gupta P.K., Yadav P.S., Kumar H., Joshi A.K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 2014;1:60-67. DOI 10.1016/j.cpb.2014.09.003.
44. Yerzhebayeva R., Abugalieva A. Anther Culture of Synthetic Wheat Obtained by Distant Hybridization. Conf. Plant Cells in vitro: Theory and Practice. Vienna, Austria, 8–9 February, 2016;41.