THE CHARACTERISTICS OF MIRNA BINDING SITES IN MRNA OF ZFHX3 GENE AND ITS ORTHOLOGS
https://doi.org/10.18699/VJ18.380
Abstract
Transcription factor gene ZFHX3 is one of the candidate genes involved in stroke development. The ZFHX3 protein contains oligopeptides encoded by trinucleotide repeats (TNRs). TNR variability is considered to be one of the causes of the disease, but their biological function has not yet been established. We assume that TNRs are the binding sites of miRNA to mRNA and are involved in regulation of ZFHX3 gene expression. The characteristics of miRNA–mRNA interaction were determined using MirTarget software. It has been shown that the first TNR in mRNA of the human ZFHX3 gene consists of the seven consecutive miR-12-32603-3p binding encoding polyGlu. The ZFHX3 protein of human polyGlu contains 30 Glu. In the orthologous proteins of 36 animal species the length of polyGlu varied from 27 Glu to 33 Glu. Negatively charged polyGlu of the ZFHX3 transcription factor probably interacted with positive DNA-binding proteins. The following mRNA region of the ZFHX3 gene contained the binding sites for miR-17-39416-3p, miR-5-15733-3p, miR-9-20317-3 encoding polyAla by 15 Ala lengths. In the 33 ZFHX3 orthologous proteins polyAla had the same length. The mRNA region of the human ZFHX3 gene with binding polysite of miR-1322-3p encoded polyGln consisting of 19 Gln. In the 41 orthologs of the ZFHX3 protein the length of polyGln varied from seven Gln to 23 Gln. The binding sites of miR-2-6184-3p, miR-5-14114-5p and miR-19-43437-5p were located with overlapping nucleotides sequences, and encode polyPro. In ZFHX3 human polyPro consisted of 12 Pro. In the orthologs, polyPro contained from 10 Pro to 14 Pro. The binding sites of miR-17-39416-3p, miR-9-20317-3p, miR-1-1819-3p, miR-5-15733-3p, miR-6-17815-3p, miR-18-39953-5p, miR-26862-5p, miR-1260b and miR-X-48174-3p in human ZFHX3 encoded polyGly by 22 Gly length. In the 28 orthologs of ZFHX3 the length of polyGly decreased to 11 Gly. The TNR regions could simultaneously bind several miRNAs, which increased the dependence of gene expression on miRNA. The oligopeptides encoded by the binding polysites of miRNA in mRNA in the orthologous ZFHX3 proteins were flanked by conserved oligopeptides.
About the Authors
A. М. KondybayevaKazakhstan
Almaty
A. N. Akimniyazova
Kazakhstan
Almaty
S. U. Kamenova
Kazakhstan
Almaty
A. Т. Ivashchenko
Kazakhstan
Almaty
References
1. Atambayeva S., Niyazova R., Ivashchenko A., Pyrkova A., Pinsky I., Akimniyazova A., Labeit S. The binding sites of miR-619-5p in the mRNAs of human and orthologous genes. BMC Genomics. 2017; 18(1):1-10. DOI 10.1186/s12864-017-3811-6.
2. Chauhan G., Debette S. Genetic risk factors for ischemic and hemorrhagic stroke. Curr. Cardiol. Rep. 2016;18(12):1-11. DOI 10.1007/s11886-016-0804-z.
3. Chen Y., Song Y., Huang J., Qu M., Zhang Y., Geng J., Zhang Z., Liu J., Yang G.Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front. Neurol. 2017;8:57. DOI 10.3389/fneur.2017.00057.
4. Dhiraj D., Chrysanthou E., Mallucci G., Bushell M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One. 2013;8(12):e83717. DOI 10.1371/journal.pone.0083717.
5. Hauer A., Pulit S., van den Berg L., de Bakker P., Veldink J., Ruigrok Y. A replication study of genetic risk loci for ischemic stroke in a Dutch population: a case-control study. Sci. Rep. 2017;7(1):1-5. DOI 10.1038/s41598-017-07404-4.
6. He C., Li Z., Chen P., Huang H., Hurst L., Chen J. Young intragenic miRNAs are less coexpressed with host genes than old ones: Implications of miRNA host gene coevolution. Nucleic Acids Res. 2012; 40(9):4002-4012. DOI 10.1093/nar/gkr1312.
7. Hoeppner M., White S., Jeffares D., Poole A. Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol. Evol. 2009;1:420-428. DOI 10.1093/gbe/evp045.
8. Inose Y., Kato Y., Kitagawa K., Uchiyama S., Shibata N. Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology. 2015;35(3):209223. DOI 10.1111/neup.12182.
9. Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva Sh. MiR-3960 binding sites with mRNA of human genes. Bioinformation. 2014;10(7):423-427. DOI 10.6026/97320630010423.
10. Ivashchenko A., Issabekova A., Berillo O. miR-1279, miR-548j, miR548m, and miR-548d-5p binding sites in CDSs of paralogous and orthologous PTPN12, MSH6, and ZEB1 genes. Biomed. Res. Int. 2013;2013:1-11. DOI 10.1155/2013/902467.
11. Ji Q., Ji Y., Peng J., Zhou X., Chen X., Zhao H., Xu T., Chen L., Xu Y. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One. 2016;11(9):1-14. DOI 10.1371/journal.pone.0163645.
12. Kurzepa J., Kurzepa J., Golab P., Czerska S., Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int. J. Neurosci. 2014;124(10):707-716. DOI 10.3109/00207454.2013.872102.
13. Li N., Yang J., Cui L., Ma N., Zhang L., Hao L. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model. Braz J. Med. Biol. Res. 2015;48(6):486-492. DOI 10.1590/1414-431X20143958.
14. Liang T.Y., Lou J.Y. Increased expression of mir-34a-5p and clinical association in acute ischemic stroke patients and in a rat model. Med. Sci. Monit. 2016;22:2950-2955. DOI 10.12659/MSM.900237.
15. Liu Y., Ni B., Lin Y., Chen X.G., Fang Z., Zhao L., Hu Z., Zhang F. Genetic polymorphisms in ZFHX3 are associated with atrial fibrillation in a Chinese Han population. PLoS One. 2014;9(7):101318. DOI 10.1371/journal.pone.0101318.
16. Londin E., Loher P., Telonis A.G., Quann K., Clark P., Jing Y., Hatzimichael E., Kirino Y., Honda S., Lally M., Ramratnam B., Comstock C.E.S., Knudsene K.E., Gomella L., Spaeth G.L., Hark L., Katz L.J., Witkiewicz A., Rostami A., Jimenez S.A., Hollingsworth M.A., Yeh J.J., Shaw C.A., McKenzie S.E., Bray P., Nelson P.T., Zupo S., Roosbroeck K.V., Keating M.J., Calin G.A., Yeo C., Jimbo M., Cozzitorto J., Brody J.R., Delgrosso K., Mattick J.S., Fortina P., Rigoutsos I. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl. Acad. Sci. USA. 2015;112(10):1106-1115. DOI 10.1073/pnas.1420955112.
17. Ma N., Wang X., Qiao Y., Li F., Hui Y., Zou C., Jin J., Lv G., Peng Y., Wang L., Huang H., Zhou L., Zheng X., Gao X. Coexpression of an intronic microRNA and its host gene reveals a potential role for miR483-5p as an IGF2 partner. Mol. Cell. Endocrinol. 2011;333(1):96101. DOI 10.1016/j.mce.2010.11.027.
18. Martin R., Owens W., Cunnington M., Mayosi B., Koref M., Keavney B. Chromosome 16q22 variants in a region associated with cardiovascular phenotypes correlate with ZFHX3 expression in a transcript-specific manner. BMC Genet. 2014;15:1-7. DOI 10.1186/ s12863-014-0136-1.
19. Mineharu Y., Inoue K., Inoue S., Yamada S., Nozaki K., Takenaka K., Hashimoto N., Koizumi A. Association analysis of common variants of ELN, NOS2A, APOE and ACE2 to intracranial aneurysm. Stroke. 2006;37(5):1189-1194. DOI 10.1161/01.STR.0000217408.91389.4d.
20. Niyazova R., Berillo O., Atambayeva Sh., Pyrkova A., Alybaeva A., Ivashchenko A. miR-1322 binding sites in paralogous and orthologous genes. Biomed. Res. Int. 2015: 962637. DOI 10.1155/2015/962637.
21. Peterson S., Thompson J., Ufkin M., Sathyanarayana P., Liaw L., Congdon C. Common features of microRNA target prediction tools. Front. Genet. 2014;5:1-10. DOI 10.3389/fgene.2014.00023.
22. Qingfeng M., Haiping Zh., Zhen T., Rongliang W., Ping L., Ziping H., Shubei M., Yumin L., Jianping J. MicroRNA-181c exacerbates brain injury in acute ischemic stroke aging and disease. Aging Dis. 2016;7(6):705-714. DOI 10.14336/AD.2016.0320.
23. Sobczak K., Michlewski G., de Mezer M., Kierzek E., Krol J., Olejniczak M., Kierzek R., Krzyzosiak W. Structural diversity of triplet repeat RNAs. J. Biol. Chem. 2010;285(17):12755-12764. DOI 10.1074/jbc.M109.078790.
24. Wu Q., Wu H., Orlov Yu.L., Gegentana G., Huo W., Bragin A.O., Wu N., Suyalatu S., Zhao F., Zhao J., Tabikhanova L.E., Chen M., Bai H. Genetic polymorphisms and related risk factors of ischemic stroke in a Mongolian population in China. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):581-587. DOI 10.18699/VJ17.275.
25. Yeste-Velasco M., Mao X., Grose R., Kudahetti S., Lin D., Marzec J., Vasiljević N., Chaplin T., Xue L., Xu M., Foster J., Karnam S., James S., Chioni A., Gould D., Lorincz A., Oliver R., Chelala C., Thomas G., Shipley J., Mather S., Berney D., Young B., Lu Y. Identification of ZDHHC14 as a novel human tumour suppressor gene. J. Pathol. 2014;232(5):566-577. DOI 10.1002/path.4327.