Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Регуляция ацетилирования гистона Н4 в центральной нервной системе и командных нейронах оборонительного поведения моллюска Helix серотонином и нейропептидом FMRFамидом

https://doi.org/10.18699/VJ18.401

Аннотация

Вовлеченность эпигенетических механизмов в формирование долго­временной памяти не вызывает сомнений. В настоящее время среди этих механизмов наиболее активно исследуются изменения уровня различных гистоновых модификаций (в первую очередь, ацетилирования и метилирования) в составе хроматина клеток центральной нервной системы (ЦНС) на различных экспериментальных моделях. Одна из наиболее удобных моделей – моллюски, их ЦНС относительно просто устроена и для ряда видов достаточно хорошо охарактеризо­вана. В работе в качестве объекта исследования использована ЦНС виноградной улитки (Helix lucorum), для которой ранее была выявлена группа нейронов, участвующих в формировании различных типов поведения, включая сохраняющийся во времени ответ на различные стимулы. Целью работы было изучение влияния известных эффекто­ров: серотонина и FMRFамида, связанных в ЦНС с активаторными и тормозными путями соответственно, на ацетилирование гистона Н4 в подглоточном комплексе ганглиев, а также в командных нейронах оборонительного поведения правого (ППа3/2) и левого (ЛПа3/2) париетальных ганглиев улитки. Исследование проводилось методом Вестерн-блот гибридизации. Полученные результаты указывают на сильную зависимость эффектов изучаемых нейромедиаторов от структур ЦНС, которые подвергались воздействию этих веществ. Так, оказалось, что в подглоточном комплексе ганглиев под действием се­ротонина происходило усиление суммарного ацетилирования гисто­на Н4, а FMRFамид подавлял его эффект. В противоположность этому, в командных нейронах правого париетального ганглия серотонин и FMRFамид усиливали действие друг друга, что приводило к суще­ственному повышению уровня ацетилирования гистона Н4. Однако в симметричных нейронах левого париетального ганглия никаких изменений в уровне ацетилирования под действием обоих веществ не наблюдалось, что служит новым свидетельством наличия функциональной асимметрии у Helix. Результаты исследования позволяют сделать заключение о двоякой роли тормозных путей, опосредуемых FMRFамидом, в зависимости от контекста нейрональных комплексов, они могут как подавлять действие активаторных путей, что было за­фиксировано нами в подглоточном комплексе ганглиев улитки, так и выступать в роли их синергистов, как в командных нейронах оборонительного поведения правого париетального ганглия.

Об авторах

Л. Н. Гринкевич
Институт физиологии им. И.П. Павлова Российской академии наук
Россия
Санкт-Петербург


Т. Г. Зачепило
Институт физиологии им. И.П. Павлова Российской академии наук
Россия
Санкт-Петербург


Список литературы

1. Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008; 8(1):57-64. DOI 10.1016/j.coph.2007.12.002.

2. Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002;26(5):597-630.

3. Bredy T.W., Wu H., Crego C., Zellhoefer J., Sun Y.E., Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 2007;14(4):268-276. DOI 10.1101/lm.500907.

4. Danilova A.B., Grinkevich L.N. Inability of juvenile snails for long-term memory formation depends on acetylation status of histone H3 and can be improved by NaB treatment. PLoS One. 2012;7(7):1-8. e41828. DOI 10.1371/journal.pone.0041828.

5. Danilova A.B., Kharchenko O.A., Shevchenko K.G., Grinkevich L.N. Histone H3 acetylation is asymmetrically induced upon learning in identified neurons of the food aversion network in the mollusk Helix lucorum. Front. Behav. Neurosci. 2010;4(180):1-7.

6. Dyakonova T.L., Sh.-Rozha K. Effect of FMRFamide on electrical and plastic properties of identified neurons of grape snail. Zhurnal Vysshey Nervnoy Deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 1986;36(4):751-759. (in Russian)

7. Dyatlov V.A. Role of calcium ions in processes of serotonin-induced modulation of neuronal response to acetylcholone application in Helix pomatia. Neurophysiology. 1988;5:489-492.

8. Elekes K., Ude J. An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: ultrastructure and synaptic connections. J. Neurocytol. 1993; 22(1):1-13.

9. Gräff J., Tsai L.H. The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 2013;53:311-330. DOI 10.1146/annurev-pharmtox-011112-140216.

10. Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5)553-574. (in Russian)

11. Grinkevich L.N. p38 МАРK is involved in the regulation of epigenetic mechanisms of food aversion learning. Bulletin of Experimental Biology and Medicine. 2017;163(4):412-414. DOI 10.1007/s10517017-3816-9.

12. Grinkevich L.N., Lisachev P.D., Kharchenko O.A., Vasil’ev G.V. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis. Brain Res. 2008;1187:12-19. DOI 10.1016/j.brainres.2007.08.029.

13. Grinkevich L.N., Vorobiova O.V. Role of modulatory mediator serotonin in induction of epigenetic processes during long-term memory formation in Helix. Russian Journal of Genetics: Applied Research. 2014;4(6):526-532. DOI 10.1134/S2079059714060094.

14. Grinkevich L.N., Vorobiova O.V. Opposing roles of serotonin and neuropeptide FMRFamide in the regulation of epigenetic processes involved in the long-term memory. Russian Journal of Genetics: Applied Research. 2017;7(3):273-280. DOI 10.1134/ S2079059717030054.

15. Guan Z., Giustetto M., Lomvardas S., Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4): 483-493.

16. Guan Z., Kim J.H., Lomvardas S., Holick K., Xu S., Kandel E.R., Schwartz J.H. p38 MAP kinase mediates both short-term and long-term synaptic depression in aplysia. J. Neurosci. 2003;23(19):7317-7325.

17. Hobert O., Johnston R.J., Chang S. Left-right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat. Rev. Neurosci. 2002;3(8):629-640. DOI 10.1038/nrn897.

18. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. DOI 10.1186/1756-6606-5-14.

19. Kharchenko O.A., Grinkevich V.V., Vorobiova O.V., Grinkevich L.N. Learning-induced lateralized activation of the MAPK/ERK cascade in identified neurons of the food aversion network in the mollusk Helix lucorum. Neurobiol. Learn. Mem. 2010;94:158-166. DOI 10.1016/j.nlm.2010.05.002.

20. Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. DOI 10.1038/emm.2016.140.

21. Lenz O., Xiong J., Nelson M.D., Raizen D.M., Williams J.A. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 2015;47:141-148. DOI 10.1016/j.bbi.2014.12.028.

22. Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004;279:40545-40559. DOI 10.1074/jbc.M402229200.

23. Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci. 2006;63:1009-1016. DOI 10.1007/s00018-006-6026-6.

24. Monsey M.S., Ota K.T., Akingbade I.F., Hong E.S., Schafe G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One. 2011;6(5):e19958. DOI 10.1371/journal.pone.0019958.

25. Raffa R.B. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides. 1988;9(4):915-922.

26. Rogers L.J., Vallortigara G. From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS One. 2008;3(6):1-5. DOI 10.1371/journal.pone.0002340.

27. Rőszer T., Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides. 2012;34(1):177-185. DOI 10.1016/j.peptides.2011.04.011.

28. Takase K., Oda S., Kuroda M., Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One. 2013;8(3):e58473. DOI 10.1371/journal.pone.0058473.

29. Telegdy G., Bollók I. Amnesic action of FMRFamide in rats. Neuropeptides. 1987;10(2):157-163.

30. Zatylny-Gaudin C., Favrel P. Diversity of the RFamide peptide family in mollusks. Front. Endocrinol. (Lausanne). 2014;5(178):1-14. DOI 10.3389/fendo.2014.00178.

31. Zhen X., Du W., Romano A.G., Friedman E., Harvey J.A. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci. 2001;21(15):5513-5529.

32. Zovkic I.B., Guzman-Karlsson M.C., Sweatt J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013;20:6174. DOI 10.1038/npp.2012.79.


Рецензия

Просмотров: 577


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)