Regulation of histone H4 acetylation in the CNS and defensive behavior command neurons of the mollusk Helix mediated by serotonin and neuropeptide FMRFamide
https://doi.org/10.18699/VJ18.401
Abstract
Epigenetic mechanisms are commonly known to underlie memory formation. Presently, scientists’ attention is focused on changes in the levels of histone modifications (mainly acetylation and methylation) in the chromatin of CNS cells tested in various experimental models. Owing to their relatively simple CNSs, mollusks are among the most popular models. Our experiments were con-ducted with the mollusk Helix lucorum because its CNS had been investigated in detail and most of its neurons had been proven to participate in the formation of different behavior patterns, including the prolonged response to various stimuli. This work concerns the influence of various effectors (serotonin and FMRFamide, associated with CNS activator and inhibitory pathways, respectively) on the acetylation of H4 histone in the subesophageal ganglion complex and in defensive behavior command neurons of the right and left parietal ganglia (RPa3/2 and LPa3/2) in the snail. Western blot analysis showed that FMRFamide inhibited histone H4 acetylation induced by serotonin in the subesophageal complex of CNS ganglia. However, serotonin and FMRFamide cooperatively enhanced the induction of histone H4 acetylation in RPa3/2 defensive behavior command neurons. No changes were found in the counterpart LPa3/2. It is a new piece of evidence for functional asymmetry in Helix. The inhibitory pathways mediated by FMRFamide not only inhibit the activatory intracellular processes in the entire CNS but can also enhance them, as in RPa3/2 defensive behavior command neurons.
About the Authors
L. N. GrinkevichRussian Federation
St. Petersburg
T. G. Zachepilo
Russian Federation
St. Petersburg
References
1. Lenz O., Xiong J., Nelson M.D., Raizen D.M., Williams J.A. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 2015;47:141-148. DOI 10.1016/j.bbi.2014.12.028.
2. Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008; 8(1):57-64. DOI 10.1016/j.coph.2007.12.002.
3. Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004;279:40545-40559. DOI 10.1074/jbc.M402229200.
4. Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002;26(5):597-630.
5. Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci. 2006;63:1009-1016. DOI 10.1007/s00018-006-6026-6.
6. Bredy T.W., Wu H., Crego C., Zellhoefer J., Sun Y.E., Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 2007;14(4):268-276. DOI 10.1101/lm.500907.
7. Monsey M.S., Ota K.T., Akingbade I.F., Hong E.S., Schafe G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One. 2011;6(5):e19958. DOI 10.1371/journal.pone.0019958.
8. Danilova A.B., Grinkevich L.N. Inability of juvenile snails for long-term memory formation depends on acetylation status of histone H3 and can be improved by NaB treatment. PLoS One. 2012;7(7):1-8. e41828. DOI 10.1371/journal.pone.0041828.
9. Raffa R.B. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides. 1988;9(4):915-922.
10. Danilova A.B., Kharchenko O.A., Shevchenko K.G., Grinkevich L.N. Histone H3 acetylation is asymmetrically induced upon learning in identified neurons of the food aversion network in the mollusk Helix lucorum. Front. Behav. Neurosci. 2010;4(180):1-7.
11. Rogers L.J., Vallortigara G. From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS One. 2008;3(6):1-5. DOI 10.1371/journal.pone.0002340.
12. Dyakonova T.L., Sh.-Rozha K. Effect of FMRFamide on electrical and plastic properties of identified neurons of grape snail. Zhurnal Vysshey Nervnoy Deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 1986;36(4):751-759. (in Russian)
13. Rőszer T., Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides. 2012;34(1):177-185. DOI 10.1016/j.peptides.2011.04.011.
14. Dyatlov V.A. Role of calcium ions in processes of serotonin-induced modulation of neuronal response to acetylcholone application in Helix pomatia. Neurophysiology. 1988;5:489-492.
15. Takase K., Oda S., Kuroda M., Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One. 2013;8(3):e58473. DOI 10.1371/journal.pone.0058473.
16. Elekes K., Ude J. An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: ultrastructure and synaptic connections. J. Neurocytol. 1993; 22(1):1-13.
17. Telegdy G., Bollók I. Amnesic action of FMRFamide in rats. Neuropeptides. 1987;10(2):157-163.
18. Gräff J., Tsai L.H. The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 2013;53:311-330. DOI 10.1146/annurev-pharmtox-011112-140216.
19. Zatylny-Gaudin C., Favrel P. Diversity of the RFamide peptide family in mollusks. Front. Endocrinol. (Lausanne). 2014;5(178):1-14. DOI 10.3389/fendo.2014.00178.
20. Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5)553-574. (in Russian)
21. Zhen X., Du W., Romano A.G., Friedman E., Harvey J.A. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci. 2001;21(15):5513-5529.
22. Grinkevich L.N. p38 МАРK is involved in the regulation of epigenetic mechanisms of food aversion learning. Bulletin of Experimental Biology and Medicine. 2017;163(4):412-414. DOI 10.1007/s10517017-3816-9.
23. Zovkic I.B., Guzman-Karlsson M.C., Sweatt J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013;20:6174. DOI 10.1038/npp.2012.79.
24. Grinkevich L.N., Lisachev P.D., Kharchenko O.A., Vasil’ev G.V. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis. Brain Res. 2008;1187:12-19. DOI 10.1016/j.brainres.2007.08.029.
25. Grinkevich L.N., Vorobiova O.V. Role of modulatory mediator serotonin in induction of epigenetic processes during long-term memory formation in Helix. Russian Journal of Genetics: Applied Research. 2014;4(6):526-532. DOI 10.1134/S2079059714060094.
26. Grinkevich L.N., Vorobiova O.V. Opposing roles of serotonin and neuropeptide FMRFamide in the regulation of epigenetic processes involved in the long-term memory. Russian Journal of Genetics: Applied Research. 2017;7(3):273-280. DOI 10.1134/ S2079059717030054.
27. Guan Z., Giustetto M., Lomvardas S., Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4): 483-493.
28. Guan Z., Kim J.H., Lomvardas S., Holick K., Xu S., Kandel E.R., Schwartz J.H. p38 MAP kinase mediates both short-term and long-term synaptic depression in aplysia. J. Neurosci. 2003;23(19):7317-7325.
29. Hobert O., Johnston R.J., Chang S. Left-right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat. Rev. Neurosci. 2002;3(8):629-640. DOI 10.1038/nrn897.
30. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. DOI 10.1186/1756-6606-5-14.
31. Kharchenko O.A., Grinkevich V.V., Vorobiova O.V., Grinkevich L.N. Learning-induced lateralized activation of the MAPK/ERK cascade in identified neurons of the food aversion network in the mollusk Helix lucorum. Neurobiol. Learn. Mem. 2010;94:158-166. DOI 10.1016/j.nlm.2010.05.002.
32. Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. DOI 10.1038/emm.2016.140.
33. Lenz O., Xiong J., Nelson M.D., Raizen D.M., Williams J.A. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 2015;47:141-148. DOI 10.1016/j.bbi.2014.12.028.
34. Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004;279:40545-40559. DOI 10.1074/jbc.M402229200.
35. Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci. 2006;63:1009-1016. DOI 10.1007/s00018-006-6026-6.
36. Monsey M.S., Ota K.T., Akingbade I.F., Hong E.S., Schafe G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One. 2011;6(5):e19958. DOI 10.1371/journal.pone.0019958.
37. Raffa R.B. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides. 1988;9(4):915-922.
38. Rogers L.J., Vallortigara G. From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS One. 2008;3(6):1-5. DOI 10.1371/journal.pone.0002340.
39. Rőszer T., Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides. 2012;34(1):177-185. DOI 10.1016/j.peptides.2011.04.011.
40. Takase K., Oda S., Kuroda M., Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One. 2013;8(3):e58473. DOI 10.1371/journal.pone.0058473.
41. Telegdy G., Bollók I. Amnesic action of FMRFamide in rats. Neuropeptides. 1987;10(2):157-163.
42. Zatylny-Gaudin C., Favrel P. Diversity of the RFamide peptide family in mollusks. Front. Endocrinol. (Lausanne). 2014;5(178):1-14. DOI 10.3389/fendo.2014.00178.
43. Zhen X., Du W., Romano A.G., Friedman E., Harvey J.A. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci. 2001;21(15):5513-5529.
44. Zovkic I.B., Guzman-Karlsson M.C., Sweatt J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013;20:6174. DOI 10.1038/npp.2012.79.