Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

ЦИТОТИПЫ МУТАНТНЫХ ЛИНИЙ DROSOPHILA MELANOGASTER ФОНДА ЛАБОРАТОРИИ ГЕНЕТИКИ ПОПУЛЯЦИЙ ИНСТИТУТА ЦИТОЛОГИИ И ГЕНЕТИКИ СО РАН: ГЕНОТИПЫ ЭНДОСИМБИОНТА WOLBACHIA И МИТОТИПЫ ВИДА-ХОЗЯИНА

Аннотация

Матерински наследуемая эндосимбиотическая бактерия Wolbachia широко распространена в природных популяциях Drosophila melanogaster. При этом следует отметить, что сведений о присутствии бактерии в лабораторных мутантных линиях в современной литературе недостаточно. В данном исследовании демонстрируется широкая распространенность эндосимбионта Wolbachia среди 353 мутантных линий фонда лаборатории генетики популяций ИЦиГ СО РАН. Отмечено, что эндосимбионт поддерживается в течение длительного времени культивирования линий, и в двух случаях, вероятно, произошла утрата Wolbachia. Генотипическое разнообразие Wolbachia представлено тремя генотипами: wMel, wMelCS, wMelCS2. Поскольку известно, что Wolbachia строго сонаследуется с митохондриями, выявление митотипического разнообразия в совокупности с данными по инфицированности позволяет установить цитотипическое разнообразие линий. В линиях фонда лаборатории генетики популяций ИЦиГ СО РАН выявлено 4 ранее описанных для природных популяций D. melanogaster цитотипа: M-MEL, M-w, S-CS, S-w. Паттерны частот цитотипов и частот генотипов значительно отличаются от таковых в природе, что объясняется схемой создания и историей ведения каждой линии.

Об авторах

Ю. Ю. Илинский
Федеральное государственное бюджетное учреждение Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Р. А. Быков
Федеральное государственное бюджетное учреждение Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
Россия


И. К. Захаров
Федеральное государственное бюджетное учреждение Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Список литературы

1. Вайсман Н.Я., Илинский Ю.Ю., Голубовский М.Д. Популяционно-генетический анализ продолжительности жизни Drosophila melanogaster: сходные эффекты эндосимбионта Wolbachia и опухолевого супрессора lgl в условиях температурного стресса // Журн. общ. биологии. 2009. Т. 70. № 5. С. 425–434.

2. Вайсман Н.Я., Голубовский М.Д., Илинский Ю.Ю. Различия в параметрах продолжительности жизни и ее пол-специфичности в популяциях человека и их моделирование на дрозофиле // Усп. геронтологии. 2013. Т. 26. № 1. С. 66–75.

3. Илинский Ю.Ю. Эндосимбионт Wolbachia в природных популяциях Drosophila melanogaster Северной Евразии: Дис. … канд. биол. наук. Новосибирск: ИЦиГ СО РАН, 2008. 154 с.

4. Илинский Ю.Ю., Захаров И.К. Характеристика инфицированности цитоплазматическим эндосимбионтом Wolbachia популяции Drosophila melanogaster Умани // Докл. АН. 2007а. Т. 413. № 4. С. 561–563.

5. Илинский Ю.Ю., Захаров И.К. Эндосимбионт Wolbachia в евразийских популяциях Drosophila melanogaster // Генетика. 2007б. Т. 43. № 7. С. 905–915.

6. Илинский Ю.Ю., Захаров И.К. Цитоплазматическая несовместимость у Drosophila melanogaster, обусловленная различными генотипами Wolbachia // Экол. генетика. 2009. Т. 7. № 2. С. 11–18.

7. Струнов А.А., Илинский Ю.Ю., Захаров И.К., Киселева Е.В. Влияние повышенной температуры на выживаемость Drosophila melanogaster, индуцированных патогенным штаммом бактерий Wolbachia // Вавилов. журн. генет. и селекции. 2013. Т. 17. № 2. С. 267–276.

8. Baldo L., Ayoub N.A., Hayashi C.Y. et al. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity // Mol. Ecol. 2008. V. 17. P. 557–569.

9. Bandi C., Anderson T.J., Genchi C., Blaxter M.L. Phylogeny of Wolbachia in filarial nematodes // Proc. R. Soc. Lond. B. Biol. Sci. 1998. V. 265. P. 2407–2413.

10. Bian G., Joshi D., Dong Y. et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection // Science. 2013. V. 340. P. 748.

11. Bressac C., Rousset F. The reproductive incompatibility system in Drosophila simulans: Dapi-staining analysis of the Wolbachia symbionts in sperm cysts // J. Invertebr. Pathol. 1993. V. 61. P. 226–230.

12. Clark M.E., Anderson C.L., Cande J., Karr T.L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research // Genetics. 2005. V. 170. P. 1667–1675.

13. Cordaux R., Michel-Salzat A., Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission // J. Evol. Biol. 2001. V. 14. P. 237–243.

14. David J.R., Capy P. Genetic variation of Drosophila melanogaster natural populations // Trends Genet. 1988. V. 4. P. 106–111.

15. De Barro P.J., Hart P.J. Antibiotic curing of parthenogenesis in Eretmocerus mundus (Australian parthenogenic form) // Entomol. Experimentalis et Applicata. 2001. V. 99. P. 225–230.

16. Dobson S.L., Marsland E.J., Rattanadechakul W. Mutualistic Wolbachia infection in Aedes albopictus: Accelerating cytoplasmic drive // Genetics. 2002. V. 160. P. 1087–1094.

17. Finnegan D.J. Transposable elements // Drosophila Information Service. 1990. No. 68. P. 371–382.

18. Fry A.J., Palmer M.R., Rand D.M. Variable fi tness effects of Wolbachia infection in Drosophila melanogaster // Heredity. 2004. V. 93. P. 379–389.

19. Glover D.M., Raff J., Karr T.L. et al. Parasites in Drosophila embryos // Nature. 1990. V. 348. P. 117.

20. Guidolin A.S., Consoli F.L. Molecular characterization of Wolbachia strains associated with the invasive Asian citrus psyllid Diaphorina citri in Brazil // Microb. Ecol. 2013. V. 65. P. 475–486.

21. Hedges L.M., Brownlie J.C., O’Neill S.L., Johnson K.N. Wolbachia and virus protection in insects // Science. 2008. V. 322. P. 702.

22. Hilgenboecker K., Hammerstein P., Schlattmann P. et al. How many species are infected with Wolbachia? – A statistical analysis of current data // FEMS Microbiol. Lett. 2008. V. 281. P. 215–220.

23. Hoffmann A.A., Clancy D.J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster // Genetics. 1994. V. 136. P. 993–999.

24. Hoffmann A.A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster // Genetics. 1998. V. 148. P. 221–231.

25. Hurst G.D.D., Jiggins F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts // Proc. Biol. Sci. 2005. V. 272. P. 1525–1534.

26. Ikeya T., Broughton S., Alic N. et al. The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila // Proc. R. Soc. B. 2009. V. 206. P. 3799–3807.

27. Ilinsky Y., Zakharov I.K. Genetic correlation between types of mtDNA of Drosophila melanogaster and genotypes of its primary endosymbiont, Wolbachia // Drosophila Information Service. 2006. V. 89. P. 89–91.

28. Ilinsky Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes // PLoS ONE. 2013. V. 8. No. 1. e54373.

29. Kremer N., Voronin D., Charif D. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects // PLoS Pathog. 2009. V. 5. No. 10. e1000630.

30. Lindsley D.L., Grell E.H. Genetic Variation of Drosophila melanogaster. Carnegie Institution of Washington Publ., 1968. 472 р.

31. Lindsley D.L., Zimm G. The Genome of Drosophila melanogaster // Drosophila Information Service. 1985. No. 62. 227 p.

32. Lindsley D.L., Zimm G. The Genome of Drosophila melanogaster // Drosophila Information Service. 1990. No. 68. 382 p.

33. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms // J. Mol. Biol. 1961. V. 3. P. 208–218.

34. Mercot H., Charlat S. Wolbachia infections in Drosophila melanogaster and D. simulans: Polymorphism and levels of cytoplasmic incompatibility // Genetica. 2004. V. 120. P. 51–59.

35. Min K.T., Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death // Proc. Natl Acad. Sci. USA. 1997. V. 94. P. 10792–10796.

36. Mobile DNA / Eds D.E. Berg, M.M. Howe. American Society for Microbiology. Washington, DC. 1989. 958 p.

37. Nunes M.D.S., Nolte V., Schlotterer C. Nonrandom Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes // Mol. Biol. Evol. 2008. V. 25. No. 11. P. 2493–2498.

38. O’Neill S.L., Karr T.L. Bi-directional incompatibility between on specific populations of Drosophila simulans // Nature. 1990. V. 348. P. 178–180.

39. O’Neill S.L., Giordano R., Colbert A.M. et al. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects // Proc. Natl Acad. Sci. USA. 1992. V. 89. P. 2699–2702.

40. Osborne S.E., Leong Y.S., O’Neill S.L., Johnson K.N. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans // PLoS Pathog. 2009. V. 5. No. 11. P. 1–9.

41. Reynolds K.T., Thomson L.J., Hoffmann A.A. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster // Genetics. 2003. V. 164. P. 1027–1034.

42. Richardson M.F., Weinert L.A., Welch J.J. et al. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster // PLoS Genet. 2012. V. 8. No. 12. e1003129.

43. Riegler M., Sidhu M., Miller W.J., O’Neill S.L. Evidence for a global Wolbachia replacement in Drosophila melanogaster // Curr. Biol. 2005. V. 15. P. 1428–1433.

44. Riegler M., Iturbe-Ormaetxe I., Woolfi t M. et al. Tandem repeat markers as novel diagnostic tools for high resolution fi ngerprinting of Wolbachia // BMC Microbiol. 2012. V. 12.

45. Sintupachee S., Milne J.R., Poonchaisri S. et al. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant // Microbial Ecol. 2006. V. 51. P. 294–301.

46. Solignac M., Vautrin D., Rousset F. Widespread occurrence of the proteobacteria Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster // C. R. Acad. Sci. Paris. 1994. V. 317. P. 461–470.

47. Starr D.J., Cline T.W. A host parasite interaction rescues Drosophila oogenesis defects // Nature. 2002. V. 418. P. 76–79.

48. Taylor M.J., Bandi C., Hoerauf A.M., Lazdins J. Wolbachia bacteria of filarial nematodes: A target for control? // Parasitol. Today. 2000a. V. 16. P. 179–180.

49. Taylor M.J., Cross H.F., Bilo K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria // J. Exp. Med. 2000b. V. 191. P. 1429–1436.

50. Teixeira L., Ferreira A., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster // PLoS Biol. 2008. V. 6. No. 12. P. 2753–2763.

51. Verspoor R.L., Haddrill P.R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations // PLoS ONE. 2011. V. 6. No. 10. e26318.

52. Watanabe M., Tagami Y., Miura K. et al. Distribution patterns of Wolbachia endosymbionts in the closely related flower bugs of the genus Orius: Implications for coevolution and horizontal transfer // Microb. Ecol. 2012. V. 64. P. 537–545.

53. Werren J.H. Biology of Wolbachia // Annu. Rev. Entomol. 1997. V. 42. P. 587–609.

54. Wolstenholme D.R. A DNA and RNA-containing cytoplasmic body in Drosophila melanogaster and its relation to flies // Genetics. 1965. V. 52. P. 949–975.

55. Zheng Y., Ren P-P., Wang J-L., Wang Y-F. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila // PLoS ONE. 2011. V. 6. No. 4. e19512.

56. Zabalou S., Apostolaki A., Pattas S. et al. Multiple rescue factors within a Wolbachia strain // Genetics. 2008. V. 178. P. 2145–2160.

57. Zug R., Hammerstein P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40 % of terrestrial arthropod species are infected // PLoS ONE. 2012. V. 7. No. 6. e38544.

58. Zhou W., Rousset F., O’Neil S. Phylogeny and pcr-based classification of Wolbachia strains using wsp gene sequences // Proc. Biol. Sci. 1998. V. 265. P. 509–515.


Рецензия

Просмотров: 690


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)