Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

SSR-локусы, потенциально ассоциированные с высоким содержанием амилопектина в эндосперме зерна кукурузы

https://doi.org/10.18699/VJ18.405

Аннотация

Зерно кукурузы (Zea mays L.) – наиболее широко используемый в мире источник натурального крахмала, что обусловлено как возможностью получения крахмала с различным соотношением амилоза/амилопектин, так и высокой продуктивностью культуры. В качестве компонента функционального питания  перспективна кукуруза с «нетрадиционным» составом зерна (восковидная, масличная, сахарная, опак и другие фенотипические варианты). К формированию восковидного эндосперма с высоким содержанием амилопектина приводят мутации гена waxy, нарушающие структуру и функцию фермента биосинтеза амилозы. Рецессивная природа мутаций гена waxy не позволяет проводить фенотипический отбор гетерозиготных носителей в гибридной популяции. Высокая частота и гетерогенная природа мутаций, нарушающих биосинтез амилозы, затрудняют однозначную идентификацию молекулярной природы возникших генетических изменений. Известно, что внутри нетранслируемых участков гена waxy присутствуют микросателлитные повторы. Задача настоящего исследования – оценить эффективность использования микросателлитных последовательностей локуса waxy для идентификации и маркирования генотипов восковидной кукурузы. Для ее решения было проанализировано содержание крахмала, короткоцепочечных растворимых углеводов, амилозы, амилопектина в зерне 33 образцов кукурузы. Идентифицированы группы образцов со сходным углеводным со ставом эндосперма, в том числе 13 высокоамилопектиновых об разцов, носителей мутаций гена waxy (wx), и 20 образцов с фенотипической нормой признака (Wx). Молекулярно-генетический скри нинг образцов коллекции включал анализ полиморфизма микросателлитных локусов phi022, phi027, phi061, ассоциированных с последовательностью гена waxy. Аллельный состав отдельных локусов и их сочетаний соотнесен с накоплением запасных углеводов в эндосперме зерна. Дифференцировать группы образцов кукурузы с диким Wx и мутантным фенотипом wx позволил только анализ сочетания аллелей локусов phi022 и phi027 либо комплекса всех трех маркеров. Таким образом, для маркер-ассоциированного отбора образцов кукурузы с высоким накоплением амилопектина в эндосперме могут представлять интерес не отдельные аллели локусов phi022, phi027, phi061, а их уникальные сочетания.

Об авторах

С. И. Вакула
Институт генетики и цитологии Национальной академии наук Беларуси.
Беларусь
Минск.


О. А. Орловская
Институт генетики и цитологии Национальной академии наук Беларуси.
Беларусь
Минск.


Л. В. Хотылева
Институт генетики и цитологии Национальной академии наук Беларуси.
Беларусь
Минск.


А. В. Кильчевский
Национальная академия наук Беларуси.
Беларусь
Минск.


Список литературы

1. Alexander D.E., Creech R.G. Breeding special and nutritional types. Corn and Corn Improvement. Ed. G.F. Sprague. Am. Soc. Agron, Madison, WI, 1977;363-390.

2. Bao J.-D., Yao J.-Q., Zhu J.-Q., Hu W.-M., Cai D-G., Li Y., Shu Q.- Y., Fan L.-J. Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol. Breed. 2012;30(4): 1707. DOI 10.1007s11032-012-9754-3.

3. Bear R.P., Vineyard M.L., MacMasters M.M., Deatherage W.L. Development of “amylomaize” – corn hybrids with high amylose starch: II. Results of breeding efforts. Agron. J. 1958;50(10):598-602. DOI 10.2134/agronj1958.00021962005000100010x.

4. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32(3):314-331.

5. Cui L., Dong Sh., Zhang J., Liu P. Starch granule size distribution and morphogenesis in maize (Zea mays L.) grains with different endosperm types. Aust. J. Crop Sci. 2014;8(11):1560-1565.

6. Dang N.-Ch. Improvement of protein quality in waxy maize (Zea mays L.) by doubled haploid and marker assisted selection techniques, doctoral thesis. Zurich. 2010. DOI org10.3929ethz-a-006192803.

7. Fan L.J., Bao J.D., Wang Y., Yao J.Q., Gui Y., Hu W., Zhu J., Zeng M., Li Y., Xu Y. Post-domestication selection in the maize starch pathway. PLoS One. 2009;4(10):e7612. DOI 10.1371/journal.pone. 0007612.

8. Hao D., Zhang Z., Cheng Y., Chen G., Lu H., Mao Y., Shi M., Huang X., Zhou G., Xue L. Identification of genetic differentiation between waxy and common maize by SNP genotyping. PLoS One. 2015;10(11):e0142585. DOI 10.1371/journal.pone.0142585.

9. Hoverkamp-Hermelink J., Devries J., Adamse P., Jacobsen E., Witholt B., Feenstra W. Rapid estimation of the amylase amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 1988;31:241-246.

10. Huang B.-Q., Tian M.-L., Zhang J.-J., Huang Y.-B. waxy locus and its mutant types in maize Zea mays L. Agr. Sci. China. 2010;9(1):1-10. DOI 10.1016S1671-2927(09)60061-4.

11. Jobling S. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 2004;7(2):210-218. DOI 10.1016/j.pbi.2003.12.001.

12. Klosgen R.B., Gierl A., Schwarz-Sommer Z., Saedler H. Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 1986; 203(2):237-244.

13. Knutson C.A. A simplified colorimetric procedure for determination of amylose in maize starches. Cereal Chem. 1986;63:89-92.

14. Lambert R.J. High-oil corn hybrids. Specialty Corns. Ed. A.R. Hallauer. FL: CRC Press, 2001;131-154.

15. Lawrence C.J., Harper L.C., Schaeffer M.L., Sen T.Z., Seigfried T.E., Campbell D.A. MaizeGDB: the maize model organism database for basic, translational, and applied research. Int. J. Plant Genomics. 2008;496957. DOI 10.1155/2008/496957.

16. Li W.C. Quality breeding. Maize Breeding in Southwestern Ecological Region. Eds. T.Z. Rong, W.C. Li, K.C. Yang, B. Zhang, S.K. Zhang, H.J. Tang, X.M. Fan. Beijing: China Agric. Press, 2003. Liu Y-J., Huang Y-B., Rong T-Z., Tian M-L., Yang J-P. Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers. Agr. Sci. China. 2005;4(9): 648-653.

17. Nugent A.P. Health properties of resistant starch. Nutr. Bull. 2005; 30(1):27-54. DOI 10.1111/j.1467-3010.2005.00481.x.

18. Pan D. Starch synthesis in maize. Carbohydrate Reserves in Plants: Synthesis and Regulation. Eds. A.K. Gupta, N. Kaur. Amsterdam: Elsevier, 2000;26:125-146.

19. Peakall R., Smouse P.E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6(1):288-295. DOI 10.1111/j.1471-8286.2005.01155.x.

20. State Standard 10845-98. Interstate standard. Grain and Products of its Processing. Method for the Starch Determination. Moscow: IPK Izdatel’stvo standartov, 2001. (in Russian)

21. State Standard 5903-89. Interstate standard. Methods for the Sugar Determination. Moscow: IPK Izdatel’stvo standartov, 2004. (in Russian)

22. Tan H.-Z., Li Z.-G., Tan B. Starch noodles: history, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res. Int. 2009;42(5):551-576. DOI 0.1016/j.foodres. 2009.02.015.

23. Tian M.L., Huang Y.B., Tan G.X., Liu Y.J., Rong T.Z. Sequence polymorphism of waxy genes in landraces of waxy maize from southwest China. Acta Agron. Sin. 2008;34(5):729-736. DOI 10.3724/ SP.J.1006.2008.00729.

24. Wang Y.-J., White P., Pollak L., Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with oh43 inbred line background. Cereal Chem. 1993:70(2):171-179.

25. Wessler S., Vagarona R. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc. Natl. Acad. Sci. USA. 1985;82(12):4177-4181.

26. Wilson L.M., Whitt Sh.R., Ibáñez A.M., Rocheford T.R., Goodman M.M., Buckler E.S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell. 2004;16(10):2719-2733. DOI 10.1105/tpc.104.025700.

27. Yang L., Wang W., Yang W., Wang M. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes. Mol. Breed. 2013;31(4):767-775. DOI 10.1007/s11032-012-9830-8.

28. Yu R.H., Wang Y.L., Sun Y., Liu B. Analysis of genetic distance by SSR in waxy maize. Genet. Mol. Res. 2012;11(1):254-260. DOI http:// dx.doi.org/10.4238/2012.February.3.5.

29. Yu X., Yu H., Zhang J., Shao Sh., Xiong F., Wang Z. Endosperm structure and physicochemical properties of starches from normal, waxy, and super-sweet Maize. Int. J. Food Prop. 2015;18(12):2825-2839. DOI 10.1080/10942912.2015.1015732.

30. Zheng H., Wang H., Yang H., Wu J., Shi B., Cai R. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PloS One. 2013:8(6):e66606. pmid:23818949. DOI 10.1371/journal. pone.0066606.


Рецензия

Просмотров: 973


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)