Preview

Vavilov Journal of Genetics and Breeding

Advanced search

SSR loci potentially associated with high amylopectine content in maize kernel endosperm

https://doi.org/10.18699/VJ18.405

Abstract

As a component of functional nutrition, maize cultivars with “non-traditional” kernel composition (waxy, oilbearing, sugar, opaque, etc. phenotypic variants) are promising. Mutations in the waxy gene, which break down the structure and function of the enzyme for amylose biosynthesis, lead to a waxy (with a high content of amylopectin) endosperm formation. High variability of the waxy gene limits the use of microsatellite loci in marker associated selection of waxy maize genotypes. The increased frequency of gene rearrangements within the waxy locus facilitated the origination of many high-amylopectin corn lines carrying different SSR allelic variants. The purpose of this study was to evaluate the effectiveness of using waxy locus microsatellite sequences for identification and labeling of waxy maize genotypes. To this end, a complex of biochemical (calorimetry, bichromate method), molecular-genetic (SSR-PCR, capillary gel electrophoresis with fluorescent detection of fragments) and statistical (descriptive statistics, cluster analysis, χ2) analysis methods was used. Plant material used were 33 samples of corn kernels including mutant forms with a high content of amylose, amylopectin, short-chain starches, were kindly provided by VIR genetic collection (Russian Federation) and Maize Genetics Cooperation Stock Center (USA). The contents of starch, short-chain soluble carbohydrates, amylose, amylopectin in the grain of 33 maize samples were evaluated. Compositionally similar (to endosperm carbohydrates content) groups of samples were identified. They include 13 high-amylopectin samples carriers of waxy (wx) gene mutations and 20 samples with wild-type character (Wx). Molecular genetic screening of the collection included an analysis of the polymorphism of the microsatellite loci phi022, phi027, phi061 associated with the waxy gene sequence. Allelic composition of individual loci and their combinations were analyzed in relation to the accumulation of reserve carbohydrates in the kernel endosperm. Only the analysis of the phi022/phi027 combination or all three markers in the complex allows differentiating the wild Wx and mutant wx phenotypes of maize. It was shown that not the individual allelic polymorphisms of the phi022, phi027, phi061 loci are efficient for the markerassociated selection of high-amylopectin maize, but their unique combinations.

About the Authors

S. I. Vakula
Institute of Genetics and Cytology, NAS of Belarus.
Belarus
Minsk.


O. A. Orlovskaya
Institute of Genetics and Cytology, NAS of Belarus.
Belarus


L. V. Khotyleva
Institute of Genetics and Cytology, NAS of Belarus.
Belarus


A. V. Kilchevsky
The National Academy of Sciences of Belarus.
Belarus
Minsk.


References

1. Alexander D.E., Creech R.G. Breeding special and nutritional types. Corn and Corn Improvement. Ed. G.F. Sprague. Am. Soc. Agron, Madison, WI, 1977;363-390.

2. Bao J.-D., Yao J.-Q., Zhu J.-Q., Hu W.-M., Cai D-G., Li Y., Shu Q.- Y., Fan L.-J. Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol. Breed. 2012;30(4): 1707. DOI 10.1007s11032-012-9754-3.

3. Bear R.P., Vineyard M.L., MacMasters M.M., Deatherage W.L. Development of “amylomaize” – corn hybrids with high amylose starch: II. Results of breeding efforts. Agron. J. 1958;50(10):598-602. DOI 10.2134/agronj1958.00021962005000100010x.

4. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32(3):314-331.

5. Cui L., Dong Sh., Zhang J., Liu P. Starch granule size distribution and morphogenesis in maize (Zea mays L.) grains with different endosperm types. Aust. J. Crop Sci. 2014;8(11):1560-1565.

6. Dang N.-Ch. Improvement of protein quality in waxy maize (Zea mays L.) by doubled haploid and marker assisted selection techniques, doctoral thesis. Zurich. 2010. DOI org10.3929ethz-a-006192803.

7. Fan L.J., Bao J.D., Wang Y., Yao J.Q., Gui Y., Hu W., Zhu J., Zeng M., Li Y., Xu Y. Post-domestication selection in the maize starch pathway. PLoS One. 2009;4(10):e7612. DOI 10.1371/journal.pone. 0007612.

8. Hao D., Zhang Z., Cheng Y., Chen G., Lu H., Mao Y., Shi M., Huang X., Zhou G., Xue L. Identification of genetic differentiation between waxy and common maize by SNP genotyping. PLoS One. 2015;10(11):e0142585. DOI 10.1371/journal.pone.0142585.

9. Hoverkamp-Hermelink J., Devries J., Adamse P., Jacobsen E., Witholt B., Feenstra W. Rapid estimation of the amylase amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 1988;31:241-246.

10. Huang B.-Q., Tian M.-L., Zhang J.-J., Huang Y.-B. waxy locus and its mutant types in maize Zea mays L. Agr. Sci. China. 2010;9(1):1-10. DOI 10.1016S1671-2927(09)60061-4.

11. Jobling S. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 2004;7(2):210-218. DOI 10.1016/j.pbi.2003.12.001.

12. Klosgen R.B., Gierl A., Schwarz-Sommer Z., Saedler H. Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 1986; 203(2):237-244.

13. Knutson C.A. A simplified colorimetric procedure for determination of amylose in maize starches. Cereal Chem. 1986;63:89-92.

14. Lambert R.J. High-oil corn hybrids. Specialty Corns. Ed. A.R. Hallauer. FL: CRC Press, 2001;131-154.

15. Lawrence C.J., Harper L.C., Schaeffer M.L., Sen T.Z., Seigfried T.E., Campbell D.A. MaizeGDB: the maize model organism database for basic, translational, and applied research. Int. J. Plant Genomics. 2008;496957. DOI 10.1155/2008/496957.

16. Li W.C. Quality breeding. Maize Breeding in Southwestern Ecological Region. Eds. T.Z. Rong, W.C. Li, K.C. Yang, B. Zhang, S.K. Zhang, H.J. Tang, X.M. Fan. Beijing: China Agric. Press, 2003. Liu Y-J., Huang Y-B., Rong T-Z., Tian M-L., Yang J-P. Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers. Agr. Sci. China. 2005;4(9): 648-653.

17. Nugent A.P. Health properties of resistant starch. Nutr. Bull. 2005; 30(1):27-54. DOI 10.1111/j.1467-3010.2005.00481.x.

18. Pan D. Starch synthesis in maize. Carbohydrate Reserves in Plants: Synthesis and Regulation. Eds. A.K. Gupta, N. Kaur. Amsterdam: Elsevier, 2000;26:125-146.

19. Peakall R., Smouse P.E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6(1):288-295. DOI 10.1111/j.1471-8286.2005.01155.x.

20. State Standard 10845-98. Interstate standard. Grain and Products of its Processing. Method for the Starch Determination. Moscow: IPK Izdatel’stvo standartov, 2001. (in Russian)

21. State Standard 5903-89. Interstate standard. Methods for the Sugar Determination. Moscow: IPK Izdatel’stvo standartov, 2004. (in Russian)

22. Tan H.-Z., Li Z.-G., Tan B. Starch noodles: history, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res. Int. 2009;42(5):551-576. DOI 0.1016/j.foodres. 2009.02.015.

23. Tian M.L., Huang Y.B., Tan G.X., Liu Y.J., Rong T.Z. Sequence polymorphism of waxy genes in landraces of waxy maize from southwest China. Acta Agron. Sin. 2008;34(5):729-736. DOI 10.3724/ SP.J.1006.2008.00729.

24. Wang Y.-J., White P., Pollak L., Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with oh43 inbred line background. Cereal Chem. 1993:70(2):171-179.

25. Wessler S., Vagarona R. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc. Natl. Acad. Sci. USA. 1985;82(12):4177-4181.

26. Wilson L.M., Whitt Sh.R., Ibáñez A.M., Rocheford T.R., Goodman M.M., Buckler E.S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell. 2004;16(10):2719-2733. DOI 10.1105/tpc.104.025700.

27. Yang L., Wang W., Yang W., Wang M. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes. Mol. Breed. 2013;31(4):767-775. DOI 10.1007/s11032-012-9830-8.

28. Yu R.H., Wang Y.L., Sun Y., Liu B. Analysis of genetic distance by SSR in waxy maize. Genet. Mol. Res. 2012;11(1):254-260. DOI http:// dx.doi.org/10.4238/2012.February.3.5.

29. Yu X., Yu H., Zhang J., Shao Sh., Xiong F., Wang Z. Endosperm structure and physicochemical properties of starches from normal, waxy, and super-sweet Maize. Int. J. Food Prop. 2015;18(12):2825-2839. DOI 10.1080/10942912.2015.1015732.

30. Zheng H., Wang H., Yang H., Wu J., Shi B., Cai R. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PloS One. 2013:8(6):e66606. pmid:23818949. DOI 10.1371/journal. pone.0066606.


Review

Views: 975


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)