Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Assessment of genetic diversity of some Siberian and Far Eastern species of the genus Spiraea (Rosaceae) by newly developed multiplex panels of nuclear SSR loci

https://doi.org/10.18699/VJ18.407

Abstract

Taxonomic and population genetic studies of the genus Spiraea (Rosaceae) species require new informative genetic markers. We screened 37 previously published heterologous oligonucleotide primer pairs for nuclear microsatellite loci and selected eight polymorphic and most reproducible of them for PCR multiplexing which substantially increases performance of routine mass genotyping. Three multiplex sets of 3, 3 and 2 loci, respectively, were developed and tested for ability to estimate the parameters of genetic variability and  population  structure in closely related species Spiraea ussuriensis, S. f lexuosa, S. chamaedryfolia representing seven natural populations of the Russian Far East and Siberia. Allele number ranged among loci from twelve (Spth20) to three. Among 41 alleles found, 7 were unique in some species/populations. Analysis of parameters of genetic variability in Spiraea spp. showed similar values of allele number per locus and observed heterozygosity among populations and slightly greater estimates of expected hete rozygosity in the samples of S. f lexuosa (NA = 2.387; HO = 0.387 ± ± 0.052; HE = 0.540 ± 0.055) as compared to S. ussuriensis (NA = = 2.781; HO = 0.385 ± 0.079; HE = 0.453 ± 0.072) and S. chamaedryfolia (NA = 2.875; HO = 0.331 ± 0.071; HE = 0.505 ± 0.069). The observed values of genetic polymorphism parameters indicate the average level of genetic diversity of the studied species typical to previous studies in Spiraea. About 19 % of the observed variability occurred among populations (FST = 0.191) while 81 % of the total genetic variation concentrated within the populations. The loci VS11, VS12, VS2, and VS6 contributed most to the observed differentiation. Nei genetic distances  between populations ranged from 0.049 to 0.585. Genetic differentiation patterns among studied populations based on allele frequencies of nuclear microsatellite loci correspond with their geographical location. Genetic composition of some samples contradicted with their provisional species identification.

About the Authors

T. A. Poliakova
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


A. V. Shatokhina
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


G. N. Bondarenko
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


D. V. Politov
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


References

1. Ashizawa K., Kimura M.K., Takahashi A., Lian Ch., Kuramoto N. Development of microsatellite markers in a riparian shrub, Spiraea thunbergii (Rosaceae). Am. J. Bot. 2012;99(7):e283­e285. DOI 10.3732/ajb.1100587.

2. Brzyski J.R. Isolation and characterization of microsatellite markers in the rare clonal plant, Spiraea virginiana (Rosaceae). Am. J. Bot. 2010;97:e20­e22. DOI 10.3732/ajb.1000008.

3. Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990;12:12­15. Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359­361. DOI 10.1007/s12686­011­9548­7.

4. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611­2620. DOI 10.1111/j.1365­294X.2005.02553.x.

5. Huh M.K. Genetic diversity and population structure of Spiraea prunifolia for. simpliciflora by inter­simple sequence repeats. J. Life Sci. 2009;19,9:1183­1189.

6. Jakobsson M., Rosenberg N.A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14): 1801­1806. DOI 10.1093/bioinformatics/btm233.

7. Khan G., Zhang F., Gao Q., Jiao X., Fu P., Xing R., Zhang J., Chen S. Isolation of 16 microsatellite markers for Spiraea alpina and S. mongolica (Rosaceae) of the Qinghai­Tibet Plateau. Appl. Plant Sci. 2014;2(1):e1­e4. DOI 10.3732/apps.1300059.

8. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research­an update. Bioinformatics. 2012;28:2537­2539. http://bioinformatics.oxfordjournals.org/content/28/19/2537.

9. Pojarkova A.I. Spiraeoideae Agardh. Flora of SSSR. Ed. V.L. Komarov. Moscow; Saint­Petersburg: Academy of Sciences of USSR Publ. 1939;9:279­318.

10. Polyakova T.A. Vnutrividovaya izmenchivost’ dal’nevostochnyh i sibirskih vidov roda Spiraea L. Novosibirsk, 2004. (in Russian)

11. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945­959.

12. Rosenberg N.A. DISTRUCT: a program for the graphical display of population structure. Publishers of Center for Computational Medicine and Biology. Department of Human Genetics. University of Michigan, 2007. http://rosenberglab.bioinformatics.med.umich.edu/distruct.html.

13. Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 2004;4:535­538. DOI 10.1111/j.1471­8286.2004.00684.x.

14. Yeh F.C., Yang R.C., Boyle T. POPGENE Version 1.31. Microsoft Window­based freeware for population genetic analysis. 1999; available at http://www.ualberta.ca/~fyeh/index.htm.

15. Zhang F.­Q., Gao Q.­B., Zhang D.­J., Duan Y.­Z., Li Y.­H., Fu P.­ C., Xing R., Gulzar K., Chen S.­L. Phylogeography of Spiraea alpina in the Qinghai­Tibetan Plateau inferred from chloroplast DNA sequence variations. J. Syst. Evol. 2012;50(4):276­283. DOI 10.1111/j.1759­6831.2012.00194.x.


Review

Views: 742


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)