Preview

Vavilov Journal of Genetics and Breeding

Advanced search

DEVELOPMENT OF NEW HIGHLY ACTIVE L-ALANINE PRODUCER STRAINS OF BREVIBACTERIUM FLAVUM AND COMPARATIVE CHARACTERIZATION OF THEIR ALANINE-SYNTHESIZING ACTIVITY

Abstract

New mutants, not described previously, resistant to L-cycloserine and β-chloro-L-alanine were derived from the parental strain Brevibacterium flavum AA5. Their alanine-producing ability was studied. It was found that the resistance to L-cycloserine did not affect the yield of L-alanine significantly, whereas the resistance to β-chloro-L-alanine of B. flavum GL1 and B. flavum GL18 strain-producers exceeds the initial level of L-alanine synthesis by 23 and 38 %, respectively.

About the Authors

G. Ye. Avetisova
Scientific and Production Center «Armbiotechnology», National Academy of Sciences of Armenia, Yerevan, Armenia
Armenia


L. H. Melkonyan
Scientific and Production Center «Armbiotechnology», National Academy of Sciences of Armenia, Yerevan, Armenia
Armenia


A. Kh. Chakhalyan
Scientific and Production Center «Armbiotechnology», National Academy of Sciences of Armenia, Yerevan, Armenia
Armenia


S. Gh. Keleshyan
Scientific and Production Center «Armbiotechnology», National Academy of Sciences of Armenia, Yerevan, Armenia
Armenia


A. S. Saghyan
Scientific and Production Center «Armbiotechnology», National Academy of Sciences of Armenia, Yerevan, Armenia
Armenia


References

1. Гайбакян Л.Д., Аветисова Г.Е., Азизян А.Г. и др. Изучение ферментов биосинтеза аланина у Brevibacterium fl avum // Биотехнология. 2003. № 1. С. 44–48.

2. Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир, 1976. 438 с.

3. Патент США. 1992. № 5124257.

4. Патент США. 1996. № 5559016.

5. Патент США. 2003. № 6627420.

6. Патент США. 2010. № 20100151449А1.

7. Филипович Ю.Б., Егорова Т.А., Севастьянова Г.А. Практикум по общей биохимии. М., 1982. 318 с.

8. Beuster G., Zarse K., Kaleta C. et al. Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth // J. Biol. Chem. 2011. V. 25. P. 22323–22330.

9. Cornell N.W., Zuurendonk P.F., Kerich M.J. et al. Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes // Biochem. J. 1984. V. 220. P. 707–716.

10. Dworkin M. The Prokaryotes: Symbiotic Associations, Biotechnology, Applied Microbiology. 3rd / Ed. H. Kumagai. Springer, 2006. V. 1. Chapter 3.2. P. 756–765.

11. Hols P., Kleerebezem M., Schanck A. et al. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering // Nature Biotechnol. 1999. V. 17. P. 588–592.

12. Ikeda M., Amino acid production processes // Adv. Biochem. Engineer./Biotechnol. 2003. V. 79. P. 1–35.

13. Marienhagen J., Eggeling L. Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production // Appl. Environ. Microbiol. 2008. V. 74. No. 24. P. 7457–7462.

14. Melkonyan L.H., Avetisova G.E., Hambardzumyan A.A. et al. Study of L-glutamate-рyruvate aminotransferase inhibition in wild type strain of Brevibacterium fl avum 14067 and L-alanine strain-producer Br. fl avum AA5 // Intern. Conf. «State-of the-Art Biotechnology in Armenia and ISTC contribution». Armenia, 2008. P. 72.

15. Wada M., Narita K., Yokota A. Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase // Appl. Microbiol. Biotechnol. 2007. V. 76. No. 4. P. 819–825.

16. Whalen W.A., Wang M.D., Berg C.M. beta-chloro-L-alanine inhibition of the Escherichia coli alanine-valine transaminase // J. Bacteriol. 1985. V. 164. No. 3. P. 1350–1352.


Review

Views: 765


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)