Тионины растений: строение, биологические функции и перспективы использования в биотехнологии
https://doi.org/10.18699/VJ18.409
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Об авторах
Т. И. ОдинцоваРоссия
Москва.
М. П. Слезина
Россия
Москва.
Е. А. Истомина
Россия
Москва.
Список литературы
1. Asano T., Miwa A., Maeda K., Kimura M., Nishiuchi T. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog. 2013;9(8):e1003581. https://doi.org/10.1371/ journal. ppat.1003581.
2. Balls A.K., Hale W.S., Harris T.H. A crystalline protein from a lipoprotein of wheat flour. Cereal Chem. 1942;19:279-288.
3. Berrocal-Lobo M., Molina A., Rodriguez-Palenzuela P., Garcia-Olmedo F., Rivas L. Leishmania donovani: thionins, plant antimicrobial peptides with leishmanicidal activity. Exp. Parasitol. 2009;122: 247-249.
4. Bohlmann H. The role of thionins in plant protection. Crit. Rev. Plant Sci. 1994;13:1-16.
5. Bohlmann H., Vignutelli A., Hilpert B., Miersch O., Wasternack C., Apel K. Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett. 1998;437(3):281-286.
6. Carmona M.J., Molina A., Fernandez J.A., Lopez-Fando J.J., GarciaOlmedo F. Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 1993; 3(3):457-462.
7. Carrasco I., Vazquez D., Hernandez-Lucas C., Carbonero P., GarciaOlmedo F. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur. J. Biochem. 1981;116(1): 185-189.
8. Castagnaro A., Maraña C., Carbonero P., García-Olmedo F. Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J. Mol. Biol. 1992;224(4):1003-1009.
9. Chan Y.L., Prasad V., Sanjaya, Chen K.H., Liu P.C., Chan M.T., Cheng C.P. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta. 2005;221(3):386-393. https://doi.org/10.1007/s00425-004-1459-3.
10. Coulon A., Berkane E., Sautereau A.M., Urech K., Rouge P., Lopez A. Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. Biochim. Biophys. Acta. 2002;1559(2):145-159. https://doi.org/10.1016/S0005-2736(01)00446-1.
11. Coulson E.J., Harris T.H., Axelrod B. Effect on small laboratory animals of the injection of the crystalline hydrochloride of a sulfur protein from wheat flour. Cereal Chem. 1942;19:301-307.
12. de Souza Cândido E., e Silva Cardoso M.H., Sousa D.A., Viana J.C., de Oliveira-Júnior N.G., Miranda V., Franco O.L. The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides. 2014;55:65-78. https://doi.org/10.1016/j.peptides.2014.02.003.
13. Diaz I., Carmona M.J., Garcia-Olmedo F. Effects of thionins on betaglucuronidase in vitro and in plant protoplasts. FEBS Lett. 1992; 296(3):279-282. https://doi.org/10.1016/0014-5793(92)80304-Y.
14. Egorov T.A., Odintsova T.I. Defense peptides of plant immune system. Russ. J. Bioorg. Khim. 2012;38(1):1-9. https://doi.org/10.1134/ S1068162012010062.
15. Epple P., Apel K., Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell. 1997;9(4):509-520. https://doi.org/10.1105/tpc.9.4.509.
16. Escudero-Martinez C.M., Morris J.A., Hedley P.E., Bos J.I.B. Barley transcriptome analyses upon interaction with different aphid species identify thionins contributing to resistance. Plant Cell Environ. 2017;40(11):2628-2643. https://doi.org/10.1111/pce.12979.
17. Fernandez de Caleya R., Gonzalez-Pascual B., Garcia-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl. Microbiol. 1972;23(5):998-1000.
18. Guzmán-Rodríguez J.J., Ochoa-Zarzosa A., López-Gómez R., LópezMeza J.E. Plant antimicrobial peptides as potential anticancer agents. Biomed. Res. Int. 2015;2015:735087. https://doi.org/10.1155/2015/735087.
19. Huang W., Vernon L.P., Bell J.D. Enhancement of adenylate cyclase activity in S49 lymphoma cell membranes by the toxin thionin from Pyrularia pubera. Toxicon. 1994;32(7):789-797.
20. Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P. The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J. Biol. Chem. 2000;275(2):823-827. https://doi.org/10.1074/jbc. 275.2.823.
21. Iwai T., Kaku H., Honkura R., Nakamura S., Ochiai H., Sasaki T., Ohashi Y. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol. Plant Microbe Interact. 2002;15(6):515-521. https://doi.org/10.1094/ MPMI.2002.15.6.515.
22. Ji H., Gheysen G., Ullah C., Verbeek R., Shang C., De Vleesschauwer D., Höfte M., Kyndt T. The role of thionins in rice defence against root pathogens. Mol. Plant Pathol. 2015;16(8):870-881. https://doi.org/10.1111/mpp.12246.
23. Johansson S., Gullbo J., Lindholm P., Ek B., Thunberg E., Samuelsson G., Larsson R., Bohlin L., Claeson P. Small, novel proteins from the mistletoe Phoradendron tomentosum exhibit highly selective cytotoxicity to human breast cancer cells. Cell. Mol. Life Sci. 2003; 60(1):165-175. https://doi.org/10.1007/s000180300011.
24. Kong J.L., Du X.B., Fan C.X., Xu J.F., Zheng X.J. Determination of primary structure of a novel peptide from mistletoe and its antitumor activity. Acta Pharmaceutica Sinica. 2004;39(10):813-817.
25. Kramer K.J., Klassen L.W., Jones B.L., Speirs R.D., Kammer A.E. Toxi city of purothionin and its homologues to the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Toxicol. Appl. Pharmacol. 1979;48:179-183.
26. Krens F.A., Schaart J.G., Groenwold R., Walraven A.E.J., Hesselink T., Thissen J.T.N.M. Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic Res. 2011;20:1113-1123. https://doi.org/10.1007/s11248-011-9484-z. Li S.-S., Gullbo J., Lindholm P., Larsson R., Thunberg E., Samuelsson G., Bohlin L., Claeson P. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J. 2002;366(2):405-413. https://doi.org/10.1042/bj20020221. Loeza-Ángeles H., Sagrero-Cisneros E., Lara-Zárate L., VillagómezGómez E., López-Meza J.E., Ochoa-Zarzosa A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol. Lett. 2008; 30(10):1713-1719. https://doi.org/10.1007/s10529-008-9756-8. Molina A., Goy P.A., Fraile A., Sanchez-Monge R., Garcia-Olmedo F. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Sci. 1993;92:169-177. Muramoto N., Tanaka T., Shimamura T., Mitsukawa N., Hori E., Koda K., Otani M., Hirai M., Nakamura K., Imaeda T. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 2012;31(6):987-997. https://doi.org/10.1007/s00299011-1217-5. Oard S.V. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochim. Biophys. Acta. 2011;1808(6): 1737-1745. https://doi.org/10.1016/j.bbamem.2011.02.003. Oard S.V., Enright F.M. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep. 2006;25(6):561-572. https://doi.org/10.1007/s00299-005-0102-5. Oard S., Karki B., Enright F. Is there a difference in metal ion-based inhibition between members of thionin family: molecular dynamics simulation study. Biophys. Chem. 2007;130(1-2):65-75. https://doi.org/10.1016/j.bpc.2007.07.005. Oard S., Rush M.C., Oard J.H. Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani. J. Appl. Microbiol. 2004;97(1):169-180. https://doi.org/10.1111/j.1365-2672. 2004.02291.x. Ochoa-Zarzosa A., Loeza-Angeles H., Sagrero-Cisneros E., Villagómez-Gómez E., Lara-Zárate L., López-Meza J.E. Antibacterial activity of thionin Thi2.1 from Arabidopsis thaliana expressed by bovine endothelial cells against Staphylococcus aureus isolates from bovine mastitis. Vet. Microbiol. 2008a;127(3-4):425-430. https://doi.org/10.1016/j.vetmic.2007.08.031. Ochoa-Zarzosa A., Loeza-Lara P.D., Torres-Rodríguez F., Loeza-Angeles H., Mascot-Chiquito N., Sánchez-Baca S., López-Meza J.E. Antimicrobial susceptibility and invasive ability of Staphylococcus aureus isolates from mastitis from dairy backyard systems. Antonie Van Leeuwenhoek. 2008b;94(2):199-206. https://doi.org/10.1007/s10482008-9230-6. Orru S., Scaloni A., Giannattasio M., Urech K., Pucci P., Schaller G. Amino acid sequence, S-S bridge arrangement and distribution in plant tissues of thionins from Viscum album. Biol. Chem. 1997; 378(9):989-996. Osório e Castro V.R., Vernon L.P. Stimulation of prothrombinase activity by the nonapeptide Thr-Trp-Ala-Arg-Asn-Ser-Tyr-Asn-Val, a segment of a plant thionin. Peptides. 2003;24(4):515-521. https://doi.org/10.1016/S0196-9781(03)00115-3. Plattner S., Gruber C., Stadlmann J., Widmann S., Gruber C.W., Altmann F., Bohlmann H. Isolation and characterization of a thionin proprotein-processing enzyme from barley. J. Biol. Chem. 2015; 290(29):18056-18067. https://doi.org/10.1074/jbc.M115.647859. Rao U., Teeter M.M. Improvement of turn structure prediction by molecular dynamics: a case study of alpha 1-purothionin. Protein Eng. 1993;6(8):837-847. Rayapuram C., Wu J., Haas C., Baldwin I.T. PR13/Thionin but not PR1 mediates bacterial resistance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Mol. Plant Microbe Interact. 2008;21(7):988-1000. https://doi.org/10.1094/MPMI-21-7-0988.
27. Richard J.A., Kelly I., Marion D., Pezolet M., Auger M. Interaction between β-purothionin and dimyristoylphosphatidylglycerol: a 31P- NMR and infrared spectroscopic study. Biophys. J. 2002;83: 2074-2083. https://doi.org/10.1016/S0006-3495(02)73968-4.
28. Romero A., Alamillo J.M., Garcia-Olmedo F. Processing of thionin precursors in barley leaves by a vacuolar proteinase. Eur. J. Biochem. 1997;243(1-2):202-208. https://doi.org/10.1111/j.14321033.1997.0202a.x.
29. Sánchez-Monge R., Delibes A., Hernandéz-Lucas C., Carbonero P., García-Olmedo F. Homoeologous chromosomal location of the genes encoding thionins in wheat and rye. Theor. Appl. Genet. 1979; 54(2):61-63. https://doi.org/10.1007/BF00265470.
30. Sarethy I.P. Plant peptides: bioactivity, opportunities and challenges. Protein Pept. Lett. 2017;24(2):102-108. https://doi.org/10.2174/0929866523 666161220113632.
31. Schrader-Fischer G., Apel K. cDNA-derived identification of novel thio nin precursors in Viscum album that contain highly divergent thio nin domains but conserved signal and acidic polypeptide domains. Plant Mol. Biol. 1993;23(6):1233-1242.
32. Silverstein K.A., Moskal W.A., Jr., Wu H.C., Underwood B.A., Graham M.A., Town C.D., VandenBosch K.A. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007;51(2):262-280. https://doi.org/10.1111/j.1365313X.2007.03136.x.
33. Slavokhotova A.A., Shelenkov A.A., Odintsova T.I. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Plant. Mol. Biol. 2015;89(3):203-214. https://doi.org/10.1007/s11103-015-0346-6.
34. Stec B. Plant thionins - the structural perspective. Cell. Mol. Life Sci. 2006;63(12):1370-1385. https://doi.org/10.1007/s00018-005-5574-5.
35. Stec B., Markman O., Rao U., Heffron G., Henderson S., Vernon L.P., Brumfeld V., Teeter M.M. Proposal for molecular mechanism of thio nins deduced from physico-chemical studies of plant toxins. J. Pept. Res. 2004;64(6):210-224. https://doi.org/10.1111/j.1399-3011.2004.00187.x.
36. Stotz H.U., Waller F., Wang K. Innate immunity in plants: The role of antimicrobial peptides. Antimicrobial Peptides and Innate Immunity. Eds. S. Hiemstra, S.A.J. Zaat. Springer, 2013;29-51.
37. Stuart L.S., Harris T.H. Bactericidal and fungicidal properties of a crystalline protein from unbleached wheat flour. Cereal Chem. 1942;19: 288-300.
38. Tabiasco J., Pont F., Fournie J.J., Vercellone A. Mistletoe viscotoxins increase natural killer cell-mediated cytotoxicity. Eur. J. Biochem. 2002;269(10):2591-2600. https://doi.org/10.1046/j.1432-1033.2002.02932.x.
39. Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel). 2015;8(4):711-757. https://doi.org/10.3390/ ph8040711.
40. Taveira G.B., Carvalho A.O., Rodrigues R., Trindade F.G., Da Cunha M., Gomes V.M. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol. 2016;16:12. https://doi.org/10.1186/s12866-016-0626-6.
41. Taveira G.B., Mathias L.S., da Motta O.V., Machado O.L., Rodrigues R., Carvalho A.O., Teixeira-Ferreira A., Perales J., Vasconcelos I.M., Gomes V.M. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers. 2014;102(1):30-39. https://doi.org/10.1002/bip.22351.
42. Taveira G.B., Mello É.O., Carvalho A.O., Regente M., Pinedo M., de La Canal L., Rodrigues R., Gomes V.M. Antimicrobial activity and mechanism of action of a thionin-like peptide from Capsicum an nuum fruits and combinatorial treatment with fluconazole against Fusarium solani. Biopolymers. 2017;108(3). https://doi.org/10.1002/bip.23008.
43. Vernon L.P., Bell J.D. Membrane structure, toxins and phospholipase A2 activity. Pharmacol. Ther. 1992;54(3):269-295. https://doi.org/10.1016/01637258(92)90003-I.
44. Vernon L.P., Evett G.E., Zeikus R.D., Gray W.R. A toxic thionin from Pyrularia pubera: purification, properties, and amino acid sequence. Arch. Biochem. Biophys. 1985;238(1):18-29. https://doi.org/10.1016/00039861(85)90136-5.
45. Vila-Perelló M., Andreu D. Characterization and structural role of disulfide bonds in a highly knotted thionin from Pyrularia pubera. Biopolymers. 2005;80(5):697-707. https://doi.org/10.1002/bip.20270.
46. Vila-Perelló M., Sánchez-Vallet A., García-Olmedo F., Molina A., Andreu D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-negative bacteria. FEBS Lett. 2003;536(1-3):215-219. https://doi.org/10.1016/S00145793(03)00053-X.
47. Vila-Perelló M., Sánchez-Vallet A., García-Olmedo F., Molina A., Andreu D. Structural dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. J. Biol. Chem. 2005;280(2): 1661-1668. https://doi.org/10.1074/jbc.M410577200.
48. Vila-Perelló M., Tognon S., Sánchez-Vallet A., García-Olmedo F., Molina A., Andreu D. A minimalist design approach to antimicrobial agents based on a thionin template. J. Med. Chem. 2006;49(2):448451. https://doi.org/10.1021/jm050882i.
49. Wada K., Ozaki Y., Matsubara H., Yoshizumi H. Studies on purothionin by chemical modifications. J. Biochem. 1982;91(1):257-263.
50. Woynarowski J.M., Konopa J. Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe Seylers Z. Physiol. Chem. 1980;361:1535-1545.