Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Характеристика сортов озимой пшеницы по устойчивости к фузариозу зерна

https://doi.org/10.18699/VJ18.411

Аннотация

По продуктивности и устойчивости к фузариозу на естественном фоне инфекции и на фоне искусственной инокуляции грибом Fusarium graminearum исследовали 17 сортов озимой пшеницы селекции Национального центра зерна им. П.П. Лукьяненко. Оценку сортов проводили на основании показателей, описывающих различные типы устойчивости: процентное содержание фузариозных зерен, выявленных по внешним признакам и в результате микологического анализа, а также содержание ДНК грибов Fusarium; показатели продуктивности инокулированных растений в сравнении с неинокулированными; количество микотоксинов в зерне. На естественном фоне, согласно результатам микологического анализа, зараженность зерна грибами рода Fusarium была в среднем 6.1 % (0–15 %), количество ДНК F. graminearum варьировало в диапазоне (1.1–42.7) × 10–5 нг/нг ДНК пшеницы, дезоксиниваленол (ДОН) обнаружен в 15 образцах с максимальным содержанием 420 мкг/кг, а фумонизин В1 (ФВ1) не выявлен. На искусственном инфекционном фоне зараженность зерна составила 25.8 % (2–54 %), количество ДНК F. graminearum было значительно выше, чем в естественных условиях, и варьировало в пределах (4.24–49.8) × 10–3 нг/нг. Образцы зерна всех сортов пшеницы, выращенных на искусственном инфекционном фоне F. graminearum, содержали ДОН в высоких количествах – от 20255 до 79245 мкг/кг. Выявлено значительное содержание ФВ1 в диапазоне от 980 до 20326 мкг/кг. Сорт Адель охарактеризован как высокоустойчивый к заражению грибами и накоплению микотоксинов. К относительно устойчивым отнесены сорта Антонина, Лебедь, Память, а наиболее восприимчивым оказался сорт Утриш. Установлены сходство реакций устойчивости сортов пшеницы к заражению F. graminearum и F. verticillioides и существующие между грибами взаимодействия в процессе колонизации зерна.

Об авторах

Т. Ю. Гагкаева
Всероссийский научно-исследовательский институт защиты растений.
Россия
Санкт-Петербург, Пушкин.


А. С. Орина
Всероссийский научно-исследовательский институт защиты растений.
Россия
Санкт-Петербург, Пушкин.


О. П. Гаврилова
Всероссийский научно-исследовательский институт защиты растений.
Россия
Санкт-Петербург, Пушкин.


И. Б. Аблова
Национальный центр зерна им. П.П. Лукьяненко.
Россия
Краснодар.


Л. А. Беспалова
Национальный центр зерна им. П.П. Лукьяненко.
Россия
Краснодар.


Список литературы

1. Ablova I.B., Bes palova L.A., Kolesnikov F.A., Nabokov G.D., Puzyurnaya O.Yu., Filobok V.A. Wheat breeding for disease resistance. Zemledelie = Agriculture. 2014;3:19-22. (in Russian)

2. Ablova I.B., Taranenko S.A. Methodological aspects of the creation of artificial infection background for Fusarium head blight of winter wheat. Evolution of Scientific Technologies in Plant Science. 2004;1:382-390. (in Russian)

3. Alexander N.J., Proctor R.H., McCormick S.P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev. 2009;28(2-3):198-215. DOI 10.1080/15569540903092142. Audenaert K., Vanheule A., Höfte M., Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins. 2013;6:1-19. DOI 10.3390/toxins6010001.

4. Babayants L.T., Meshterkhazi А., Vekhter V. Methods of Breeding and Assessment of Disease Resistance of Wheat and Barley in CMEA Countries. Prague, 1988. (in Russian)

5. Bespalova L.A., Romanenko A.A., Ko lesnikov F.A., …, Kalmysh A.P., Ponomarev D.A., Belyakova A.Yu. Varieties of Wheat and Triticale from the Lukyanenko Agricultural Research Institute. Krasnodar, 2017. (in Russian)

6. Bespalova L.A., Vasilyev A.V., Ablova I.B., Filobok V.A., Khudokormova Z.N., Davoyan R.O., Davoyan E.R., Karlov G.I., Solo viev A.A., Divashuk M.G., Mayer N.K., Dudnikov M.V., Mironenko N.V., Baranova O.A. The use of molecular markers in wheat breeding at the Lukyanenko Agricultural Research Institute. Russian Journal of Genetics: Applied Research. 2012;2(4):286-290.]

7. Desjardins A.E., Munkvold G.P., Plattner R.D., Proctor R.H. FUM1 – a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol. Plant-Microbe Interact. 2002;11:1157-1164. DOI 10.1094/MPMI. 2002.15.11.1157.

8. Desjardins A.E., Plattner R.D. Fumonisin B (1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J. Agric. Food Chem. 2000;48:5773-5780.

9. Dill-Macky R., Jones R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000;84:71-76. DOI 10.1094/PDIS.2000.84.1.71.

10. Gagkaeva T.Yu., Gavrilova O.P. Grain infection by Fusarium fungi in the Krasnodar and Stavropol regions. Zashchita i Karantin Rasteniy = Plant Protection and Qua ran tine. 2014;3:30-33. (in Russian)

11. Gerlach W., Nirenberg H. The Genus Fusarium – a Pictorial Atlas Mitt. Biol. Bund. Ld. Berlin, 1982. Halstensen A.S., Nordby K.C., Eduard W., Klemsdal S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monit. 2006;8:1235-1241. DOI 10.1039/b609840a.

12. Iglesias J., Presello D.A., Botta G., Lori G.A., Fauguel C.M. Aggressiveness of Fusarium section Liseola isolates causing maize ear rot in Argentina. Eur. J. Plant Pathol. 2010;92(1):205-211. DOI 10.4454/jpp.v92i1.31.

13. Maiorano A., Blandino M., Reyneri A., Vanara F. Effects of maize residues on the Fusarium spp. infection and deoxynivalenol (DON) contamination of wheat grain. Crop Prot. 2008;27:182-188. DOI 10.1016/j.cropro.2007.05.004.

14. Mesterhazy A. Theory and practice of the breeding for Fusarium head blight in wheat. J. Appl. Genet. 2002;43A:289-302.

15. Nicolaisen M., Suproniene S., Nielsen L.K., Lazzaro I., Spliid N.H., Justesen A.F. Real-time PCR for quantification of eleven individual Fusarium species in cereals. J. Microbiol. Methods. 2009;76:234240. DOI 10.1016/j.mimet.2008.10.016.

16. Picot A., Hourcade-Marcolla D., Barreau C., Pinson-Gadais L., Caron D., Richard-Forget F., Lannou C. Interactions between Fusarium verticillioides and Fusarium graminearum in maize ears and consequences for fungal development and mycotoxin accumulation. Plant Pathol. 2012;61:140-151. DOI 10.1111/j.1365-3059.2011.02503.x.

17. Preiser V., Goetsch D., Sulyok M., Krska R., Mach R.L., Farnleitner A., Brunner K. The development of a multiplex real-time PCR to quantify Fusarium DNA of trichothecene and fumonisin producing strains in maize. Anal. Methods. 2015;7:1358-1365.

18. Presello D.A., Iglesias J., Botta G., Lori G.A., Eyherabide G.H. Stability of maize resistance to the ear rots caused by Fusarium graminearum and F. verticillioides in Argentinean and Canadian environments. Euphytica. 2006;147:403-407. DOI 10.1007/s10681-005-9037-8.

19. Stanković S., Lević J., Krnjaja V. Fumonisin B1 in maize, wheat and barley grain in Serbia. Biotechnol. Animal Husb. 2011;27(3):631641. DOI 10.2298/BAH1103631S.

20. Yli-Mattila T., Paavanen-Huhtala S., Jestoi M., Parikka P., Hietaniemi V., Gagkaeva T., Sarlin T., Haikara A., Laaksonen S., Rizzo A. Real-time PCR detection and quantification of Fusarium poae, F. gra minearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch. Phytopathol. Plant Protect. 2008; 41:243-260. DOI 10.1080/03235400600680659.


Рецензия

Просмотров: 1187


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)