Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Analysis of GH1, GHR and PRL gene polymorphisms for estimation of the genetic diversity of Buryat and Altai cattle breeds

https://doi.org/10.18699/VJ18.417

Abstract

Small and unique Buryat and Altai cattle breeds of TuranoMongolian origin are well adapted to harsh conditions of the continental climate to be their habitat. However, the population-genetic structure of the breeds has been poorly studied. This paper presents the results of analysis of polymorphisms GH1 (AC_000176.1: BTA 19, exon 5, rs41923484, g.2141C>G, L127V), GHR (AC_000177.1: BTA 20, exon 10, rs109300983, g.257A>G, S555G) and PRL (AC_000180.1: BTA 23, exon 3, g.35108342A>G) in the samples of Buryat cattle breed of Russia, China and Mongolia, and indigenous Altai cattle breed (Russia) that belong to TuranoMongolian cattle. The Russian sample of Buryat breed was differentiated from the Mongolian sample based on pairwise G-test and FST values for the PRL-RsaI polymorphism and from the Chinese sample – based on pairwise G-test values for the GH1-AluI polymorphism. All the three samples of Buryat breed clearly differed from the sample of Altai breed based on pairwise G-test and FST values for the GHR-AluI polymorphism as well as on the base of FST values for the joint polymorphism of the three genes. Nei’s genetic distances calculated from the three gene polymorphisms also confirmed the difference between the two breeds. The results of AMOVA demonstrated that GHR gene variability (16 %) gave the largest contribution to the differentiation that was confirmed by FST values (0.12–0.27). The STRUCTURE software enabled us to reveal four clusters, with a specific ratio for each sample, in the Chinese and Mongolian samples of Buryat breed, and in the sample of Altai breed, while the Russian sample of Buryat breed had only three clusters. The differences within the breed level were determined based on the GH1-AluI and PRL-RsaI polymorphisms, while at the inter-breed level – based on the GHR-AluI polymorphism. Linkage disequilibrium analysis demonstrated significant linkage of the following pairs of genes in the Buryat breed: GH1-GHR, GH1-PRL, GHR-PRL.

About the Authors

I. V. Lazebnaya
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


A. V. Perchun
Federal Centre for Animal Health.
Russian Federation
Vladimir.


B. B. Lhasaranov
Ltd Shuluuta, Buryatia.
Russian Federation
Ulan-Ude.


O. E. Lazebny
Koltzov Institute of Developmental Biology, RAS.
Russian Federation
Moscow.


Yu. A. Stolpovskiy
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


References

1. Bal kov M.N. Buryat Cattle: Origin and Ways of Improvement. Ulan-Ude: Buryat Publ. House, 1962. (in Russian)

2. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 1995;57(1):289-300.

3. Chrenek P., Huba J., Oravcova M., Hetenyi L., Peskovicova D., Bulla J. Genotypes of bGH and bPRL genes in relationships to milk production. Proc. of the 50th Annual Meeting of the EAAP: Book of Abstracts. Zurich, 1999;40.

4. Chung E.R., Rhim T.J., Han S.K. Associations between PCR-RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Korean J. Anim. Sci. 1996;38:321-336.

5. Di Stasio L., Destefanis G., Brugiapaglia A., Albera A., Rolando A. Polymorphism of the GHR gene in cattle and relationships with meat production and quality. Anim. Genet. 2005;36(2):138-140. DOI 10.1111/j.1365-2052.2005.01244.x.

6. Dmitriev N.G., Ernest L.K. Animal genetic resources of the USSR (No. FAO APHP 65). FAO, Roma (Italia), 1989.

7. Dybus A., Grzesiak W., Szatkowska I., Blaszczyk P. Association between the growth hormone combined genotypes and dairy traits in Polish Black-and-White cows. Anim. Sci. Pap. Rep. 2004;22(2): 185-194.

8. Gorlov I.F., Fedyunin A.A., Randelin D.A., Sulimova G.E. Polymorphisms of bGH, RORC, and DGAT1 genes in Russian beef cattle breeds. Russ. J. Genet. 2014;50(12):1302-1307.

9. Hiendleder S., Lewalski H., Janke A. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet. Genome Res. 2008;120(1-2):150-156. DOI 10.1159/000118756.

10. Hradecka E., Citek J., Panicke L., Rehout V., Hanusova L. The relation of GH, GHR and DGAT1 polymorphisms with estimated breeding values for milk production traits of German Holstein sires. Czech J. Anim. Sci. 2008;53(6):238-245.

11. Inoue K., Goda H., Mogi C., Tomida M., Tsurugano S. The Role of Glucocorticoids and Retinoic Acid in the Pituitary Endocrine Cell Differentiation. In: Neuroplasticity, Development, and Steroid Hormone Action. CRC Press, 2001;73.

12. Kantanen J., Edwards C.J., Bradley D.G., Viinalass H., Thessler S., Ivanova Z., Kiselyova T., Cinkulov M., Popov R., Stojanović S., Ammosov I., Vilkki J. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity. 2009;103(5):404-415. DOI 10.1038/hdy.2009.68.

13. Lazebnaya I.V., Lazebny O.E., Khatami S.R., Sulimova G.E. Use of the Bovine Prolactin Gene (bPRL) for Estimating Genetic Variation and Milk Production in Aboriginal Russian Breeds of Bos taurus L. In: Nagy G.M. (Ed.). Prolactin. InTech, 2013. DOI 10.5772/54756. Available at: https://www.intechopen.com/books/prolactin/use-of-the-bovine-prolactin-gene-bprl-for-estimating-genetic-variation-and-milk-production-in-aborig

14. Lazebnaya I.V., Lazebny O.E., Sulimova G.E. Study of genetic variation in Yakutian cattle (Bos taurus L.) using the prolactin bPRL, growth hormone bGH, and transcription factor bPit-1. Russ. J. Genet. 2010;46(3):377-380.

15. Lewin H.A., Schmitt K., Hubert R., van Eijk M.J., Arnheim N. Close linkage between bovine prolactin and BoLA-DRB3 genes: genetic mapping in cattle by single sperm typing. Genomics. 1992;13(1): 44-48. DOI 10.1016/0888-7543(92)90200-C.

16. Mitra A., Schlee P., Balakrishnan C.R., Pirchner F. Polymorphisms at growth hormone and prolactin loci in Indian cattle and buffalo. J. Anim. Breed. Genet. 1995;112:71-74.

17. Moiseeva I.G., Ukhanov S.V., Stolpovsky Yu.A., Sulimova G.E., Kashtanov S.N. The Gene Pool of Farm Animals: The Genetic Resources of Livestock in Russia. (Ed. I.A. Zakharov). Moscow: Nauka Publ., 2006. (in Russian)

18. Mwai O., Hanotte O., Kwon Y.J., Cho S. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian-Australas. J. Anim. Sci. 2015;28(7):911-921. DOI 10.5713/ajas.15. 0002R.

19. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583590.

20. Shabtay A. Adaptive traits of indigenous cattle breeds: The Mediterranean Baladi as a case study. Meat Sci. 2015;109:27-39. DOI 10.1016/j.meatsci.2015.05.014.

21. Stolpovsky Yu.A., Ahani A.M., Evsukov A.N., Kol N.V., Ruzina M.N., Voronkova V.N., Sulimova G.E. Comparison of ISSR polymorphism among cattle breeds. Russ. J. Genet. 2011;47(2):189-200.

22. Tapio I., Tapio M., Li M.H., Popov R., Ivanova Z., Kantanen J. Estimation of relatedness among non-pedigreed Yakutian cryobank bulls using molecular data: implications for conservation and breed management. Genet. Sel. Evol. 2010;42(1):28. DOI 10.1186/1297-9686-42-28.

23. Ukhanov S.V., Stolpovsky Yu.A., Bannikova L.V., Zubareva L.A., Ivanova Z.I., Verdiev Z.K. Cattle Genetic Resources: Rare and Endangered Native Breeds (Ed. I.A. Zakharov). Moscow: Nauka Publ., 1993. (in Russian)

24. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2017; 120(2):125-137. DOI 10.1038/s41437-017-0024-3.


Review

Views: 1016


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)