ГЕНЕТИЧЕСКАЯ СЛОЖНОСТЬ И КОНТЕКСТ-СПЕЦИФИЧНОСТЬ ПРИЗНАКОВ УРОЖАЯ ПШЕНИЦЫ В ЗАСУШЛИВЫХ УСЛОВИЯХ

Полный текст:


Аннотация

В засушливых регионах дефицит воды разной продолжительности и интенсивности часто сочетается с жарой и другими и стрессами, и лишь изредка встречаются годы с благоприятным увлажнением. В этих контрастных условиях ведущую роль в урожае зерна играет образ жизни сорта (озимые, яровые, продолжительность вегетационного периода) и технология. Например, в конце ХХ в. в Поволжье РФ потепление в зимний период и улучшение технологии позволили озимой пшенице почти повсеместно вытеснить яровую. Идентификация и маркирование QTL открыли новые возможности для выявления генетических различий между генотипами по каждому признаку, на которые опирается традиционная селекция, более обоснованно подбирать родительские пары для скрещивания и проводить отбор. Однако эффект QTL, как правило, в огромной степени зависит, с одной стороны, от генетического фона (плейотропия, эпистаз, использование чужеродных генов), с другой –от внешней среды (время и интенсивность засухи, технология выращивания) и взаимодействия между аллелями и внешней средой. Все это вынуждает в каждом селекционном цикле каждый новый рекомбинантный генотип подвергать генетической идентификации в единстве с аккуратным фенотипированием. В условиях ограниченного финансирования селекции наибольшую пользу от использований ДНК-технологий можно ожидать лишь на популяциях от скрещиваний лучших элитных сортов и перспективных линий и тогда, когда для улучшения признака(ов) одно традиционное фенотипирование, без дополнения генотипированием, безуспешно.


Об авторе

В. А. Крупнов
Государственное научное учреждение Научно-исследовательский институт сельского хозяйства Юго-Востока, Саратов, Россия
Россия


Список литературы

1. Беспалова Л.А, Васильев А.В., Аблова И.Б. и др. Применение молекулярных маркеров в селекции пшеницы в Краснодарском НИИСХ им П.П. Лукьяненко // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. С. 37–43.

2. Боровик А.Н. Селекционно-генетическая ценность сорта шарада (Т. sphaerococum Perc.): aвтореф. дис. ... канд. с.-х. наук. Краснодар, 2004. 21 с.

3. Вьюшков А.А., Мальчиков П.Н., Сюков В.В., Шевченко С.Н. Селекционно-генетическое улучшение яровой пшеницы: изд. 2-е. Самара: Известия Самарского научного центра РАН, 2012. 536 с.

4. Вьюшков А.А., Шевченко С.Н., Германцев Л.А. и др. Продуктивность остистых и безостых изолиний яровой мягкой пшеницы на Юго-Востоке // Биологические основы селекции. Саратов, 1991. С. 159–165.

5. Германцев Л.А., Крупнов В.А. Влияние температуры воздуха на продуктивность яровой пшеницы в зоне каштановых почв Поволжья // Вестн. Рос. акад. с.-х. наук. 2001. Т. 2. С. 33–35.

6. Касатов В.И., Крупнов В.А. Выполненность соломины и продуктивность яровой мягкой пшеницы // Докл. ВАСХНИЛ. 1983. № 3. С. 10–12.

7. Крупнов В.А. Засуха и селекция пшеницы: системный подход // С.-х. биология. 2011. № 1. С. 12–23.

8. Крупнов В.А., Крупнова О.В. Генетическая архитектура содержания белка в зерне пшеницы // Генетика. 2012. Т. 48. № 2. С. 149–159.

9. Крупнов В.А., Сибикеев С.Н. Чужеродные гены для улучшения мягкой пшеницы // Идентифицированный генофонд растений и селекция / Под ред. Б.В. Ригина, Е.И. Гаевской. СПб.: ВИР, 2005. С. 740–758.

10. Кузьменко А.И. Саратовские сорта яровой мягкой пшеницы (практическая селекция). Саратов: Изд-во Саратов. ун-та, 2005. 300 с.

11. Кумаков В.А. Физиологическое обоснование моделей сортов пшеницы. М.: Агропромиздат, 1985. 270 с.

12. Лобачёв Ю.В. Проявление генов низкорослости у яровых пшениц в Нижнем Поволжье. Саратов: Изд-во СГАУ, 2000. 264 с.

13. Мамонтова В.Н. Селекция и семеноводство яровой пшеницы: Избр. тр. М.: Колос, 1980. 287 с.

14. Стебут А.И. Отчет селекционного отдела // Тр. Саратовской областной с.-х. станции. Саратов, 1915. Вып. 3. С. 227–445.

15. Чесноков Ю.В., Почепня Н.В., Бёрнер А. и др. Эколого-генетическая организация количественных признаков растений и картирование локусов, определяющих агрономически важные признаки у мягкой пшеницы // Докл. АН. 2008. Т. 418. № 5. С. 1–4.

16. Шехурдин А.П. Избранные сочинения. М.: Сельхозиздат, 1961. 326. с.

17. Arraiano L.S., Balaam N., Fenwick P.M. et al. Contributions of disease resistance and escape to the control of Septoria tritici blotch of wheat // Plant Pathol. 2009. V. 58. P. 910–922.

18. Bennett D., Reynolds M., Mullan D. et al. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments // Theor. Appl. Genet. 2012. V. 125. P. 1473–1485.

19. Blanco A., Mangini G., Giancaspro A. et al. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars // Mol. Breed. 2012. V. 30. P. 79–92.

20. Blum A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress // Field Crops Res. 2009. V. 112. P. 119–123.

21. Bnejdi F., Colin H., El Gazzeh M. Genetic adaptability of inheritance of resistance to biotic and abiotic stress level on crop: Role of epistasis // Afr. J. Biotechnol. 2011. V. 10 (86). P. 19913–19917.

22. Bogard M., Jourdan M., Allard V. et al. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for fl owering time QTLs // J. Exp. Bot. 2011. V. 62. P. 3621–3636.

23. Bolton M.D. Primary metabolism and plant defense-fuel for the fi re // Mol. Plant Microbe Interact. 2009. V. 22. P. 487–497.

24. Breseghello F., Sorrells M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars // Genetics. 2006. V. 172. P. 1165–1177.

25. Brevis J.C., Morris C.F., Manthey F., Dubcovsky J. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality // J. Cereal Sci. 2010. V. 51. P. 357–365.

26. Brisson N., Gate P., Gouache D. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France // Field Crops Res. 2010. V. 119. P. 201–212.

27. Brunner S., Hurni S., Herren G. et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the fi eld // Plant Biotechnol. J. 2011. V. 9. P. 897–910.

28. Cadalen T., Sourdille P., Charmet G. et al. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population // Theor. Appl. Genet. 1998. V. 96. P. 933–940.

29. Charmet G., Storlie E. Implementation of genome-wide selection in wheat // Вавилов. журн. генет. и селекции, 2012. Т. 16. № 1. С. 61–68.

30. Christopher J.T., Manschadi A.M., Hammer G.L., Borrell A.K. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat // Aust. J. Agric. Res. 2008. V. 59. P. 354–364.

31. Crossa J., Burgueño J., Dreisigacker S. et al. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure // Genetics. 2007. V. 177. P. 1889–1913.

32. Crow J.F. Plant breeding giants. Burbank, the artist; Vavilov, the scientist // Genetics. 2001. V. 158. P. 1391–1395.

33. Cui F., Ding A., Li J. et al. Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? // J. Genet. 2011. V. 90. P. 409–425.

34. Dashti H., Naghav M.R., Tajabadipour A. Genetic analysis of salinity tolerance in a bread wheat cross // J. Agr. Sci. Tech. 2010. V. 12. P. 347–356.

35. Deng S., Wu X., Wu Y. et al. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat // Theor. Appl. Genet. 2011. V. 122. P. 281–289.

36. Des Marais D.L., Juenger T.E. Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance // Ann. N.Y. Acad. Sci. 2010. Sept. 1206. P. 56–79.

37. Dıaz De Leon J.L., Escoppinichi R., Geraldo N. et al. Quantitative trait loci associated with salinity tolerance in fi eld grown bread wheat // Euphytica. 2011. V. 181. P. 371–383.

38. Dilbirligi M., Erayman M., Campbell B.T. et al. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A // Genomics. 2006. V. 88. P. 74–87.

39. Dyck J.A., Matus-Cádiz M.A., Hucl P. et al. Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod // Crop Sci. 2004. V. 44. P. 1976–1981.

40. Ehdaie B., Merhaut D.J., Ahmadian S. et al. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat // J. Agron. Crop Sci. 2010. V. 196. P. 455–466.

41. Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat // J. Exp. Bot. 2010. V. 61. P. 3211–3222.

42. Foulkes M.J., Sylvester-Bradley R., Weightman R., Snape J.W. Identifying physiological traits associated with improved drought resistance in winter wheat // Field Crops Res. 2007. V. 103. P. 11–24.

43. Friebe B., Jiang J., Raupp W.J. et al. Characterization of wheatalien translocations conferring resistance to diseases and pests: Current status // Euphytica. 1996. V. 91. P. 59–87.

44. Gegas V.C., Nazari A., Griffi ths S. et al. A genetic framework for grain size and shape variation in wheat // Plant Cell. 2010. V. 22. P. 1046–1056.

45. Graybosch R.A., Seabourn B., Chen Y.R., Blechl A.E. Quality and agronomic effects of three high-molecular-weight glutenin subunit transgenic events in winter wheat // Cereal Chem. 2011. V. 88. No. 1. P. 95–102.

46. Griffi ths S., Simmonds J., Leverington M. et al. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm // Theor. Appl. Genet. 2009. V. 11. P. 383–395.

47. Groos C., Robert N., Bervas E., Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat // Theor. Appl. Genet. 2003. V. 106. P. 1032–1040.

48. Hanocq E., Laperche A., Jaminon O. et al. Most signifi cant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL metaanalysis // Theor. Appl. Genet. 2007. V. 114. P. 569–584.

49. Hao Z.N., Wang J., Wang L.P., Tao R.X. Infl uences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality // Afr. J. Biotechnol. 2009. V. 8. P. 4845–4848.

50. Huang X.Q., Kempf H., Ganal M.W., Roder M.S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2004. V. 109. P. 933–943.

51. Jackson S.A., Iwata A., Lee S.-H. et al. Sequencing crop genomes: approaches and applications // New Phytol. 2011. V. 191. P. 915–925.

52. Kalinina O., Zeller S.L., Schmid B. Competitive performance of transgenic wheat resistant to powdery mildew // PLoS ONE. 2011. V. 6. No. 11. e28091.

53. Karley A.J., Valentine T., Squire G. Dwarf alleles differentially affect barley root traits infl uencing nitrogen acquisition under low nutrient supply // J. Exp. Bot. 2011. V. 62. P. 3917–3927.

54. Kim W., Johnson J.W, Baenziger P.S. et al. Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources // Crop Sci. 2004. V. 44. Р. 1254–1258.

55. Kirigwi F.M., Van Ginkel M., Brown-Guedira G. et al. Markers associated with a QTL for grain yield in wheat under drought // Mol. Breed. 2007. V. 20. P. 401–413.

56. Kuchel H., Williams K., Langridge P. et al. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction // Theor. Appl. Genet. 2007. V. 115. P. 1015–1027.

57. Kumar S., Sehgal S. K., Kumar U. et al. Genomic characterization of drought tolerance-related traits in spring wheat // Euphytica. 2012. V. 186. P. 265–276.

58. Le Gouis J., Bordes J., Ravel C. et al. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat // Theor. Appl. Genet. 2012. V. 124. P. 597–611.

59. Li G.P., Chen P.D., Zhang S.Z. et al. Effects of the 6VS·6AL translocation on agronomic traits and dough properties of wheat // Euphytica. 2007. V. 155. P. 305–313.

60. Liang Y.L., Richards R.A. Coleoptile tiller development is associated with fast early vigour in wheat // Euphytica. 1994. V. 80. P. 119–124.

61. Ma H.X., Bai G.H., Zhang X., Lu W.Z. Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population // Phytopathology. 2006. V. 96. P. 534–541.

62. Ma S.C., Xu B.C., Li F.M. et al. Effects of root pruning on competitive ability and water use effi ciency in winter wheat // Field Crops Res. 2008. V. 105. P. 56–63.

63. Maccaferri M., Sanguineti M. C., Corneti S. et al. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability // Genetics. 2008. V. 178. P. 489–511.

64. Maccaferri M., Sanguineti M.C., Demontis A. et al. Association mapping in durum wheat grown across a broad range of water regimes // J. Exp. Bot. 2011. V. 62. P. 409–438.

65. Makepeace J.C., Oxley S.J.P., Havis N.D. et al. Associations between fungal and abiotic leaf spotting and the presence of mlo alleles in barley // Plant Pathol. 2007. V. 56. P. 934–942.

66. Manès Y., Gomez H.F., Puhl L. et al. Genetic yield gains of the CIMMYT International semi-arid wheat yield trials from 1994 to 2010 // Crop Sci. 2012 V. 52. P. 1543–1552.

67. Marza F., Bai G-H., Carver B.F., Zhou W-C. Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark // Theor. Appl. Genet. 2006. V. 112. P. 688–698.

68. Mason R.E., Mondal S., Beecher F.W., Hays D.B. Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions // Euphytica. 2011. V. 180. P. 181–194.

69. McCartney C.A., Somers D.J., Humphreys D.G. et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’ // Genome. 2005. V. 48. P. 870–883.

70. McIntosh R., Yamazak Y., Dubcovsky J. et al. Catalogue of Gene Symbols for Wheat. 2008. http://www.grs.nig.ac.jp/wheat/komugi/genes/.

71. McIntyre C.L., Mathews K.L., Rattey A. et al. Molecular detection of genomic regions associated with grain yield and yield components in an elite bread wheat cross evaluated under irrigated and rainfed conditions // Theor. Appl. Genet. 2010. V. 120. P. 527–541.

72. Miedaner T., Voss H-H. Effect of dwarfi ng Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars // Crop Sci. 2008. V. 48. P. 2115–2122.

73. Miedaner T., Würschum T., Maurer H.P. et al. Association mapping for Fusarium head blight resistance in European soft winter wheat // Mol. Breed. 2011. V. 28. P. 647–655.

74. Motzo R., Giunta F. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat // Aust. J. Agric. Res. 2002. V. 53. P. 1285–1293.

75. Munns R., James R.A., Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals // J. Exp. Bot. 2006. V. 57. P. 1025–1043.

76. Naruoka Y., Sherman J. D., Lanning S. P. et al. Genetic analysis of green leaf duration in spring wheat // Crop Sci. 2012. V. 52. No. 1. P. 99–109.

77. Naruoka Y., Talbert L.E., Lanning S.P. et al. Identifi cation of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat // Theor. Appl. Genet. 2011. V. 123. P. 1043–1053.

78. Nevo E., Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement // Plant Cell, Environ. 2010. V. 33. P. 670–685.

79. Orgil U., Araki H., Tangchaiburana S. et al. Intraspecific genetic variations, fi tness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana // Genetics. 2007. V. 176. P. 2317–2333.

80. Palta J.A., Chen X., Milroy S.P. et al. Large root systems: are they useful in adapting wheat to dry environments? // Funct. Plant Biol. 2011. V. 38. P. 347–354.

81. Parry M.A., Reynolds M., Salvucci M.E. et al. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency // J. Exp. Bot. 2011. V. 62. P. 453–467.

82. Passioura J.B. The drought environment: physical, biological and agricultural perspectives // J. Exp. Bot. 2007. V. 58. P. 113–117.

83. Passioura J.B. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? // Functional Plant Biol. 2012. V. 39. P. 851–859.

84. Peake A.S., Gilmour A. Cooper M. The 1BL/1RS translocation decreases grain yield of spring wheat germplasm in low yield environments of north-eastern Australia // Crop Pasture Sci. 2011.V. 62. P. 276–288.

85. Pinto R.S., Reynolds M.P., Mathews K.L. et al. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects // Theor. Appl. Genet. 2010. V. 121. P. 1001–1021.

86. Qiu G.Y., Wang L., He X. et al. Water use effi ciency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain // Agric. Forest Meteo. 2008. V. 148. P. 1848–1859.

87. Quarrie S.A., Steed A., Calestani C. et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments // Theor. Appl. Genet. 2005. V. 110. P. 865–880.

88. Rebetzke G.J., Ellis M.H., Bonnett D.G., Richards R.A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2007. V. 114. P. 1173–1183.

89. Rebetzke G.J., Herwaarden A.F., Jenkins C. et al. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat // Aust. J. Agric. Res. 2008. V. 59. P. 891–905.

90. Reif J.C., Maurer H.P., Korzun V. et al. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat // Theor. Appl. Genet. 2011. V. 123. P. 283–292.

91. Reynolds M.P., Calderini D.F., Condon A.G., Rajaram S. Physiological basis of yield grains in wheat associated with the Lr19 translocation from Agropyron elongatum // Euphytica. 2001. V. 119. P. 139–144.

92. Richards R.A., Rebetzke G.J., Watt M. et al. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment // Funct. Plant Biol. 2010. V. 37. P. 85–97.

93. Sadeque A., Turner M.A. QTL Analysis of plant height in hexaploid wheat doubled haploid population // J. Agr. Sci. 2010. V. 43. P. 91–96.

94. Sadras V.O., Angus J.F. Benchmarking water-use effi ciency of rainfed wheat in dry environments // Aust. J. Agric. Res. 2006, V. 57. P. 847–856.

95. Saint Pierre C., Crossa J.L., Bonnett D. et al. Phenotyping transgenic wheat for drought resistance // J. Exp. Bot. 2012. V. 63. P. 1799–1808.

96. Salina E., Borner A., Leonova I. et al. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum // Theor. Appl. Genet. 2000. V. 100. P. 686–689.

97. Sanguineti M.C., Li S., Maccaferri M. et al. Genetic dissection of seminal root architecture in elite durum wheat germplasm // Ann. Appl. Biol. 2007. V. 151. P. 291–305.

98. Saville R.J., Gosman N., Burt C.J. et al. Green Revolution’ dwarfi ng genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare // J. Exp. Bot. 2012. V. 63. P. 1271–1283.

99. Sharma S., Xu S., Ehdaie B. et al. Dissection of QTL effects for root traits using a chromosome arm-specifi c mapping population in bread wheat // Theor. Appl. Genet. 2011. V. 122. P. 759–769.

100. Simmonds J.R., Fish L.J., Leverington-Waite M.A. et al. Mapping of a gene (Vir ) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation // Euphytica. 2008. V. 159. P. 333–341.

101. Sinclair T.R. Challenges in breeding for yield increase for drought // Trends in Plant Sci. 2011. V. 16. P. 289–293. Snape J.W., Foulkes J., Simmonds J. et al. Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis // Euphytica. 2007. V. 154. P. 401–408.

102. Srinivasachary Gosman N., Steed A., Hollins T.W. et al. Semidwarfi ng Rht-B1 and Rht-D1 loci of wheat differ significantly in their infl uence on resistance to Fusarium head blight // Theor. Appl. Genet. 2009. V. 118. P. 695–702.

103. Stelmakh A.F. Genetic systems regulating fl owering response in wheat // Euphytica. 1998. V. 100. P. 359–369.

104. Su J.Y., Zheng Q., Li H.W. et al. Detection of QTLs for phosphorus use effi ciency in relation to agronomic performance of wheat grown under phosphorus suffi cient and limited conditions // Plant Sci. 2009. V. 176. P. 824–836.

105. Sun X-Y., Wu K., Zhao Y. et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat // Euphytica. 2008. V. 65. P. 615–624.Tardieu F. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario // J. Exp. Bot. 2012. V. 63. P. 25–31.

106. Tian D., Traw M.B., Chen J.Q. et al. Fitness costs of R-genemeditated resistance in Arabidopsis thaliana // Nature. 2003. V. 423. P 74–77.

107. van Ginkel M., Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions // Field Crops Res. 2007. V. 104. P. 86–94.

108. Verma V., Foulkes M.J., Worland A.J. et al. Mapping quantitative trait loci for fl ag leaf senescence as a yield determinant in winter wheat under optimal and drought stressed environments // Euphytica. 2004. V. 135. P. 255–263.

109. Verma V., Worland A.J., Savers E.J. et al. Identifi cation and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat // Plant Breed. 2005. V. 124. P. 234–241.

110. Vijayalakshmi K., Fritz A.K., Paulsen G.M. et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature // Mol. Breed. 2010. V. 26. P. 163–175.

111. Villareal R.L., Banuelos O., Mujeeb-Kazi A., Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82 // Euphytica. 1998. V. 103. P. 195–202.

112. Wardlaw I.F., Dawson I.A., Munibi P., Fewster R. The tolerance of wheat to high-temperatures during reproductive growth. 1. Survey procedures and general response patterns // Aust. J. Agric. Res. 1989. V. 40. P. 1–13.

113. Watts S.M., Dodson C.D., Reichman O.J. The Roots of Defense: Plant resistance and tolerance to belowground herbivory // PLoS ONE. 2011. V. 6. No. 4. e18463. doi:10.1371/journal.pone.0018463.

114. Wojciechowski T., Gooding M.J., Ramsay L., Gregory P.J. The effects of dwarfi ng genes on seedling root growth of wheat // J. Exp. Bot. 2009. V. 60. P. 2565–2573.

115. Yoshida T., Nishida H., Zhu J. et al. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat // Theor. Appl. Genet. 2010. V. 120. P. 543–552.

116. Zhang L.Y., Liu D.C., Guo X.L. et al. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat // J. Integr. Plant Biol. 2010. V. 52. P. 996–1007.


Дополнительные файлы

Просмотров: 204

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)