1. Abe K., Araki E., Suzuki Y., Toki S., Saika H. Production of high oleic/ low linoleic rice by genome editing. Plant Physiol. Biochem. 2018; 131:58-62. https://doi.org/10.1016/J.PLAPHY.2018.04.033.
2. Andersson M., Turesson H., Olsson N., Fält A.S., Ohlsson P., Gonzalez M.N., Samuelsson M., Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 2018; 164:378-384. https://doi.org/10.1111/ppl.12731.
3. Begemann M.B., Gray B.N., January E., Gordon G.C., He Y., Liu H., Wu X., Brutnell T., Mockler T., Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 2017;7(1):11606. https://doi.org/10.1038/s41598-017-11760-6.
4. Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 2018;8(1): 6502. https://doi.org/10.1038/s41598-018-24690-8.
5. Braatz J., Harloff H.J., Mascher M., Stein N., Himmelbach A., Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 2017;174(2):935-942. https://doi.org/10.1104/pp.17.00426.
6. Butt H., Eid A., Ali Z., Atia M.A.M., Mokhtar M.M., Hassan N., Lee C., Bao G., Mahfouz M.M. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front. Plant Sci. 2017;8:1441. https://doi.org/10.3389/fpls.2017.01441.
7. Deng L., Wang H., Sun C., Li Q., Jiang H., Du M., Li C.B., Li C. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genomics. 2017;45:51-54. https://doi.org/10.1016/J.JGG.2017.10.002.
8. Hensel G., Pouramini P., Hiekel S., Reuter P., Baier S., Kumlehn J. Generation of new barley mutant alleles of LIPOXYGENASE 1 using CRISPR RNA/Cas9-endonuclease technology. In Vitro Cellular & Developmental Biology-Plant. 2018;54:S87-S88.
9. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611620. https://doi.org/10.1007/s00299-017-2107-2.
10. Hu B., Li D., Liu X., Qi J., Gao D., Zhao S., Huang S., Sun J., Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol. Plant. 2017;10(12):1575-1578. https://doi.org/10.1016/J.MOLP.2017.09.005.
11. Kim H., Kim S.T., Ryu J., Kang B.C., Kim J.S., Kim S.G. CRISPR/ Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. https://doi.org/10.1038/ncomms14406.
12. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modified using the CRISPR/Cas system. Russ. J. Genet.: Appl. Res. 2017;7(8):822-832. https://doi.org/10.1134/S2079059717050124.
13. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.-H., Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16:1892-1903. https://doi.org/10.1111/pbi.12924.
14. Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li X., Zhao Y., Xia L. Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. J. Integr. Plant Biol. 2018;60(7):536-540. https://doi.org/10.1111/jipb.12650.
15. Li X., Zhou W., Ren Y., Tian X., Lv T., Wang Z., Fang J., Chu C., Yang J., Bu Q. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet. Genomics. 2017;44(3):175-178. https://doi.org/10.1016/J.JGG.2017.02.001.
16. Liang Z., Chen K., Yan Y., Zhang Y., Gao C. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol. J. 2018;16:2053-2062. https://doi.org/10.1111/pbi.12938.
17. Liu Y., Merrick P., Zhang Z., Ji C., Yang B., Fei S. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/ Cas9. Plant Biotechnol. J. 2018;16(2):381-393. https://doi.org/10.1111/pbi. 12778.
18. Lu H., Liu S., Xu S., Chen W., Zhou X., Tan Y., Huang J., Shu Q. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol. J. 2017;15(11):1371-1373. https://doi.org/10.1111/pbi.12788.
19. Lu K., Wu B., Wang J., Zhu W., Nie H., Qian J., Huang W., Fang Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018;16:1710-1722. https://doi.org/10.1111/pbi.12907.
20. Meng X., Hu X., Liu Q., Song X., Gao C., Li J., Wang K. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci. China Life Sci. 2018;61(1):122-125. https://doi.org/10.1007/s11427-017-9247-9.
21. Miao C., Xiao L., Hua K., Zou C., Zhao Y., Bressan R.A., Zhu J.K. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc. Natl. Acad. Sci. USA. 2018;115(23): 6058-6063. https://doi.org/10.1073/pnas.1804774115.
22. Nakayasu M., Akiyama R., Lee H.J., Osakabe K., Osakabe Y., Watanabe B., Sugimoto Y., Umemoto N., Saito K., Muranaka T., Mizutani M. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 2018;131:70-77. https://doi.org/10.1016/J.PLAPHY.2018.04.026.
23. Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7(1):482. https://doi.org/10.1038/s41598017-00578-x.
24. Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Perin C., Sentenac H., Véry A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J. 2017;92(1): 43-56. https://doi.org/10.1111/tpj.13632.
25. Nonaka S., Arai C., Takayama M., Matsukura C., Ezura H. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 2017;7(1):7057. https://doi.org/10.1038/ s41598-017-06400-y.
26. Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 2018;131:63-69. https://doi.org/10.1016/J.PLAPHY.2018.04.025.
27. Park J.J., Yoo C.G., Flanagan A., Pu Y., Debnath S., Ge Y., Ragauskas A., Wang Z.Y. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol. Biofuels. 2017;10(1):284. https://doi.org/10.1186/s13068017-0972-0.
28. Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15(12):1509-1519. https://doi.org/10.1111/pbi.12733.
29. Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2017;16:902-910. https://doi.org/10.1111/pbi.12837.
30. Shen L., Hua Y., Fu Y., Li J., Liu Q., Jiao X., Xin G., Wang J., Wang X., Yan C., Wang K. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci. China Life Sci. 2017; 60(5):506-515. https://doi.org/10.1007/s11427-017-9008-8.
31. Shen R., Wang L., Liu X., Wu J., Jin W., Zhao X., Xie X., Zhu Q., Tang H., Li Q., Chen L., Liu Y.G. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat. Commun. 2017;8(1):1310. https://doi.org/10.1038/s41467-017-01400-y.
32. Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K., Terada R., Nishida K., Kondo A. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol. Biochem. 2018a;131:78-83. https://doi.org/10.1016/J.PLAPHY. 2018.04.028.
33. Shimatani Z., Fujikura U., Ishii H., Terada R., Nishida K., Kondo A. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief. 2018b;20:1325-1331. https://doi.org/10.1016/J.DIB.2018.08.124.
34. Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., Kondo A. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35(5):441-443. https://doi.org/10.1038/nbt.3833.
35. Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. Generation of high-amylose rice through CRISPR/ Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017;8:298. https://doi.org/10.3389/fpls.2017.00298.
36. Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan A.M. Genome editing in maize directed by CRISPR- Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:13274. https://doi.org/10.1038/ncomms 13274.
37. Tang L., Mao B., Li Y., Lv Q., Zhang L., Chen C., He H., Wang W., Zeng X., Shao Y., Pan Y., Hu Y., Peng Y., Fu X., Li H., Xia S., Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017;7(1):14438. https://doi.org/10.1038/s41598-017-14832-9.
38. Tomlinson L., Yang Y., Emenecker R., Smoker M., Taylor J., Perkins S., Smith J., MacLean D., Olszewski N.E., Jones J.D.G. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol. J. 2019; 17:132-140. https://doi.org/10.1111/pbi.12952.
39. Ueta R., Abe C., Watanabe T., Sugano S.S., Ishihara R., Ezura H., Osakabe Y., Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 2017;7(1):507. https://doi.org/10.1038/s41598-017-00501-4.
40. Wang F.Z., Chen M.X., Yu L.J., Xie L.J., Yuan L.B., Qi H., Xiao M., Guo W., Chen Z., Yi K., Zhang J., Qiu R., Shu W., Xiao S., Chen Q.F. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front. Plant Sci. 2017;8:1868. https://doi.org/10.3389/fpls.2017.01868.
41. Wang X., Tu M., Wang D., Liu J., Li Y., Li Z., Wang Y., Wang X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2017;16:844-855. https://doi.org/10.1111/pbi.12832.
42. Wang Y., Meng Z., Liang C., Meng Z., Wang Y., Sun G., Zhu T., Cai Y., Guo S., Zhang R., LinY. Increased lateral root formation by CRISPR/ Cas9-mediated editing of arginase genes in cotton. Sci. China Life Sci. 2017;60(5):524-527. https://doi.org/10.1007/s11427-017-9031-y.
43. Xie Y., Niu B., Long Y., Li G., Tang J., Zhang Y., Ren D., Liu Y., Chen L. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J. Integr. Plant Biol. 2017;59(9):669679. https://doi.org/10.1111/jipb.12564.
44. Yamano T., Nishimasu H., Zetsche B., Hirano H., Slaymaker I.M., Li Y., Fedorova I., Nakane T., Makarova K., Koonin E., Ishitani R., Zhang F., Nureki O. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016;165(4):949-962. https://doi.org/10.1016/J.CELL.2016.04.003.
45. Yang H., Wu J.-J., Tang T., Liu K.D., Dai C. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci. Rep. 2017;7(1):7489. https://doi.org/10.1038/s41598-017-07871-9.
46. Yang Y., Zhu K., Li H., Han S., Meng Q., Khan S.U., Fan C., Xie K., Zhou Y. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol. J. 2018;16(7):1322-1335. https://doi.org/10.1111/pbi.12872.
47. Yu Q., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q., Asmutola P. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 2017;7(1):11874. https://doi.org/10.1038/s41598-017-12262-1.
48. Zhang J., Zhang H., Botella J.R., Zhu J.K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2018;60(5):369-375. https://doi.org/10.1111/jipb.12620.
49. Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91(4): 714-724. https://doi.org/10.1111/tpj.13599.