Текущие достижения в области модификации генов культурных растений с использованием системы CRISPR/Cas
https://doi.org/10.18699/VJ19.458
Аннотация
Об авторах
А. М. КоротковаРоссия
Новосибирск
С. В. Герасимова
Россия
Новосибирск
Е. К. Хлесткина
Россия
Новосибирск;
Санкт-Петербург
Список литературы
1. Abe K., Araki E., Suzuki Y., Toki S., Saika H. Production of high oleic/ low linoleic rice by genome editing. Plant Physiol. Biochem. 2018; 131:58-62. DOI 10.1016/J.PLAPHY.2018.04.033.
2. Andersson M., Turesson H., Olsson N., Fält A.S., Ohlsson P., Gonzalez M.N., Samuelsson M., Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 2018; 164:378-384. DOI 10.1111/ppl.12731.
3. Begemann M.B., Gray B.N., January E., Gordon G.C., He Y., Liu H., Wu X., Brutnell T., Mockler T., Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 2017;7(1):11606. DOI 10.1038/s41598-017-11760-6.
4. Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Song H., Gao C., Voytas D., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 2018;8(1): 6502. DOI 10.1038/s41598-018-24690-8.
5. Braatz J., Harloff H.J., Mascher M., Stein N., Himmelbach A., Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 2017;174(2):935-942. DOI 10.1104/pp.17.00426.
6. Butt H., Eid A., Ali Z., Atia M.A.M., Mokhtar M.M., Hassan N., Lee C., Bao G., Mahfouz M.M. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front. Plant Sci. 2017;8:1441. DOI 10.3389/fpls.2017.01441.
7. Deng L., Wang H., Sun C., Li Q., Jiang H., Du M., Li C.B., Li C. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genomics. 2017;45:51-54. DOI 10.1016/J.JGG.2017.10.002.
8. Hensel G., Pouramini P., Hiekel S., Reuter P., Baier S., Kumlehn J. Generation of new barley mutant alleles of LIPOXYGENASE 1 using CRISPR RNA/Cas9-endonuclease technology. In Vitro Cellular & Developmental Biology-Plant. 2018;54:S87-S88.
9. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611620. DOI 10.1007/s00299-017-2107-2.
10. Hu B., Li D., Liu X., Qi J., Gao D., Zhao S., Huang S., Sun J., Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol. Plant. 2017;10(12):1575-1578. DOI 10.1016/J.MOLP.2017.09.005.
11. Kim H., Kim S.T., Ryu J., Kang B.C., Kim J.S., Kim S.G. CRISPR/ Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. DOI 10.1038/ncomms14406.
12. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modified using the CRISPR/Cas system. Russ. J. Genet.: Appl. Res. 2017;7(8):822-832. DOI 10.1134/S2079059717050124.
13. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.-H., Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16:1892-1903. DOI 10.1111/pbi.12924.
14. Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li X., Zhao Y., Xia L. Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. J. Integr. Plant Biol. 2018;60(7):536-540. DOI 10.1111/jipb.12650.
15. Li X., Zhou W., Ren Y., Tian X., Lv T., Wang Z., Fang J., Chu C., Yang J., Bu Q. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet. Genomics. 2017;44(3):175-178. DOI 10.1016/J.JGG.2017.02.001.
16. Liang Z., Chen K., Yan Y., Zhang Y., Gao C. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol. J. 2018;16:2053-2062. DOI 10.1111/pbi.12938.
17. Liu Y., Merrick P., Zhang Z., Ji C., Yang B., Fei S. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/ Cas9. Plant Biotechnol. J. 2018;16(2):381-393. DOI 10.1111/pbi. 12778.
18. Lu H., Liu S., Xu S., Chen W., Zhou X., Tan Y., Huang J., Shu Q. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol. J. 2017;15(11):1371-1373. DOI 10.1111/pbi.12788.
19. Lu K., Wu B., Wang J., Zhu W., Nie H., Qian J., Huang W., Fang Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018;16:1710-1722. DOI 10.1111/pbi.12907.
20. Meng X., Hu X., Liu Q., Song X., Gao C., Li J., Wang K. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci. China Life Sci. 2018;61(1):122-125. DOI 10.1007/s11427-017-9247-9.
21. Miao C., Xiao L., Hua K., Zou C., Zhao Y., Bressan R.A., Zhu J.K. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc. Natl. Acad. Sci. USA. 2018;115(23): 6058-6063. DOI 10.1073/pnas.1804774115.
22. Nakayasu M., Akiyama R., Lee H.J., Osakabe K., Osakabe Y., Watanabe B., Sugimoto Y., Umemoto N., Saito K., Muranaka T., Mizutani M. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 2018;131:70-77. DOI 10.1016/J.PLAPHY.2018.04.026.
23. Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7(1):482. DOI 10.1038/s41598017-00578-x.
24. Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Perin C., Sentenac H., Véry A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J. 2017;92(1): 43-56. DOI 10.1111/tpj.13632.
25. Nonaka S., Arai C., Takayama M., Matsukura C., Ezura H. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 2017;7(1):7057. DOI 10.1038/ s41598-017-06400-y.
26. Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 2018;131:63-69. DOI 10.1016/J.PLAPHY.2018.04.025.
27. Park J.J., Yoo C.G., Flanagan A., Pu Y., Debnath S., Ge Y., Ragauskas A., Wang Z.Y. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol. Biofuels. 2017;10(1):284. DOI 10.1186/s13068017-0972-0.
28. Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15(12):1509-1519. DOI 10.1111/pbi.12733.
29. Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2017;16:902-910. DOI 10.1111/pbi.12837.
30. Shen L., Hua Y., Fu Y., Li J., Liu Q., Jiao X., Xin G., Wang J., Wang X., Yan C., Wang K. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci. China Life Sci. 2017; 60(5):506-515. DOI 10.1007/s11427-017-9008-8.
31. Shen R., Wang L., Liu X., Wu J., Jin W., Zhao X., Xie X., Zhu Q., Tang H., Li Q., Chen L., Liu Y.G. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat. Commun. 2017;8(1):1310. DOI 10.1038/s41467-017-01400-y.
32. Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K., Terada R., Nishida K., Kondo A. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol. Biochem. 2018a;131:78-83. DOI 10.1016/J.PLAPHY. 2018.04.028.
33. Shimatani Z., Fujikura U., Ishii H., Terada R., Nishida K., Kondo A. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief. 2018b;20:1325-1331. DOI 10.1016/J.DIB.2018.08.124.
34. Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., Kondo A. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35(5):441-443. DOI 10.1038/nbt.3833.
35. Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. Generation of high-amylose rice through CRISPR/ Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017;8:298. DOI 10.3389/fpls.2017.00298.
36. Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan A.M. Genome editing in maize directed by CRISPR– Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:13274. DOI 10.1038/ncomms 13274.
37. Tang L., Mao B., Li Y., Lv Q., Zhang L., Chen C., He H., Wang W., Zeng X., Shao Y., Pan Y., Hu Y., Peng Y., Fu X., Li H., Xia S., Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017;7(1):14438. DOI 10.1038/s41598-017-14832-9.
38. Tomlinson L., Yang Y., Emenecker R., Smoker M., Taylor J., Perkins S., Smith J., MacLean D., Olszewski N.E., Jones J.D.G. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol. J. 2019; 17:132-140. DOI 10.1111/pbi.12952.
39. Ueta R., Abe C., Watanabe T., Sugano S.S., Ishihara R., Ezura H., Osakabe Y., Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 2017;7(1):507. DOI 10.1038/s41598-017-00501-4.
40. Wang F.Z., Chen M.X., Yu L.J., Xie L.J., Yuan L.B., Qi H., Xiao M., Guo W., Chen Z., Yi K., Zhang J., Qiu R., Shu W., Xiao S., Chen Q.F. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front. Plant Sci. 2017;8:1868. DOI 10.3389/fpls.2017.01868.
41. Wang X., Tu M., Wang D., Liu J., Li Y., Li Z., Wang Y., Wang X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2017;16:844-855. DOI 10.1111/pbi.12832.
42. Wang Y., Meng Z., Liang C., Meng Z., Wang Y., Sun G., Zhu T., Cai Y., Guo S., Zhang R., LinY. Increased lateral root formation by CRISPR/ Cas9-mediated editing of arginase genes in cotton. Sci. China Life Sci. 2017;60(5):524-527. DOI 10.1007/s11427-017-9031-y.
43. Xie Y., Niu B., Long Y., Li G., Tang J., Zhang Y., Ren D., Liu Y., Chen L. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J. Integr. Plant Biol. 2017;59(9):669679. DOI 10.1111/jipb.12564.
44. Yamano T., Nishimasu H., Zetsche B., Hirano H., Slaymaker I.M., Li Y., Fedorova I., Nakane T., Makarova K., Koonin E., Ishitani R., Zhang F., Nureki O. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016;165(4):949-962. DOI 10.1016/J.CELL.2016.04.003.
45. Yang H., Wu J.-J., Tang T., Liu K.D., Dai C. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci. Rep. 2017;7(1):7489. DOI 10.1038/s41598-017-07871-9.
46. Yang Y., Zhu K., Li H., Han S., Meng Q., Khan S.U., Fan C., Xie K., Zhou Y. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol. J. 2018;16(7):1322-1335. DOI 10.1111/pbi.12872.
47. Yu Q., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q., Asmutola P. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 2017;7(1):11874. DOI 10.1038/s41598-017-12262-1.
48. Zhang J., Zhang H., Botella J.R., Zhu J.K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2018;60(5):369-375. DOI 10.1111/jipb.12620.
49. Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91(4): 714-724. DOI 10.1111/tpj.13599.