Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effect of lethal yellow (AY) mutation and photoperiod alterations on mouse behavior

https://doi.org/10.18699/VJ19.461

Abstract

Decrease in natural illumination in fall/winter months causes depressive-like seasonal affective disorders in vulnerable individuals. Obesity is another risk factor of depression. The lethal yellow (AY) mutation causes ectopic expression of agouti protein in the brain. Mice heterozygous for AY mutation (AY/a) are obese compared to their wild-type littermates (a/a). The main aims of the study were to investigate the effects of AY mutation, photoperiod and the interaction between these factors on daily activity dynamics, feeding, locomotor and exploratory activities, anxiety-related and depressive-like behaviors in mild stress condition. Six weeks old mouse males of AY/a and a/a lines were divided into four groups eight animals each and exposed to long- (14 h light and 10 h darkness) or short- (4 h light and 20 h darkness) day conditions for 28 days. Then the behavior of these mice was successively investigated in the home cage, open field, elevated plus-maze and forced swim tests. We did not observed any effect of AY mutation on the general activity, water and food consumption in the home cage; locomotion and exploration in the open field test; anxiety-related behavior in the open field and elevated plus-maze tests. At the same time, AY mutation increased depressive-like immobility time in the forced swim test (F1.28 = 20.03, p = 0.00012). Shortday conditions decreased nocturnal activity in the home cage, as well as locomotion (F1.28 = 16.33, p = 0.0004) and exploration (F1.28 = 16.24, p < 0.0004) in the open field test. Moreover, short-day exposition decreased time spent in the center of the open field (F1.28 = 6.57, p = 0.016) and in the open arms of the elevated plus-maze (F1.28 = 12.08, p = 0.0017) tests and increased immobility time in the forced swim test (F1.28 = 9.95, p = 0.0038). However, no effect of the interaction between AY mutation and photoperiod on immobility time in the forced swim test was observed. Therefore, short-day photoperiod and AY mutation increased depressive-like behavior in the forced swim test by means of different mechanisms.

About the Authors

E. Y. Bazhenova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


D. V. Fursenko
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


N. V. Khotskin
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


I. E. Sorokin
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


A. V. Kulikov
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


References

1. Alves R., Barbosa De Carvalho G., Antonio M., Venditti C. High-and low-rearing rats differ in the brain excitability controlled by the allosteric benzodiazepine site in the GABAA receptor. J. Behav. Brain Sci. 2012;2:315-325. DOI 10.4236/jbbs.2012.23036.

2. Bains R.S., Wells S., Sillito R.R., Armstrong J.D., Cater H.L., Banks G., Nolan P.M. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods. 2018;300:37-47. DOI 10.1016/j.jneumeth.2017.04.014.

3. Bazhan N.M., Yakovleva T.V., Kazantseva A.Y., Makarova E.N. Exaggerated anorexigenic response to restraint stress in A(y) mice is associated with elevated CRFR2 mRNA expression in the hypothalamus. Physiol. Behav. 2013;120:19-25. DOI 10.1016/j.physbeh.2013.06.023.

4. Boston B.A., Blaydon K.M., Varnerin J., Cone R.D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science. 1997;278:1641-1644. DOI 10.1126/science.278. 5343.1641.

5. Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002;134:49-57. DOI 10.1016/S0166-4328(01)00452-1.

6. Caruso V., Lagerström M.C., Olszewski P.K., Fredriksson R., Schiöth H.B. Synaptic changes induced by melanocortin signaling. Nat. Rev. Neurosci. 2014;15:98-110. DOI 10.1038/nrn3657.

7. Chaki S., Okubo T. Melanocortin-4 receptor antagonists for the treatment of depression and anxiety disorders. Curr. Top. Med. Chem. 2007;7:1145-1151. DOI 10.2174/156802607780906618.

8. Chaki S., Okuyama S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides. 2005;26:1952-1964. DOI 10.1016/j.peptides.2004.11.029.

9. Chaki S., Oshida Y., Ogawa S.I., Funakoshi T., Shimazaki T., Okubo T., Nakazato A., Okuyama S. MCL0042: A nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity. Pharmacol. Biochem. Behav. 2005; 82:621-626. DOI 10.1016/j.pbb.2005.11.001.

10. Crusio W.E. Genetic dissection of mouse exploratory behavior. Behav. Brain Res. 2001;125:127-132. DOI 10.1016/S0166-4328(01)00280-7.

11. Fisher S.P., Godinho S.I.H., Pothecary C.A., Hankins M.W., FosterR.G., Peirson S.N. Rapid assessment of sleep-wake behavior in mice. J. Biol. Rhythms. 2012;27:48-58. DOI 10.1177/0748730411431550.

12. Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl. Clin. Genet. 2014;7:43-53. DOI 10.2147/TACG. S39993.

13. Khotskin N.V., Sorokin I.E., Kulikova E.A., Kulikov А.V. Effect of Zbtb33 gene knockout and bacterial lipopolysaccharide on home cage behavior in mice. Vavilovskii Zhurnal Genetiki i Selektsii= Vavilov Journal of Genetics and Breeding. 2017;21(7):804-809. DOI 10.18699/VJ17.297. (in Russian)

14. Kulikov A.V., Morozova M.V., Kulikov V.A., Kirichuk V.S., Popova N.K. Automated analysis of antidepressants’ effect in the forced swim test. J. Neurosci. Methods. 2010;191:26-31. DOI 10.1016/j.jneumeth.2010.06.002.

15. Kulikov A.V., Tikhonova M.A., Kulikov V.A. Automated measurement of spatial preference in the open field test with transmitted lighting. J. Neurosci. Methods. 2008;170:345-351. DOI 10.1016/j.jneumeth.2008.01.024.

16. Kulikov V.A., Khotskin N.V., Nikitin S.V., Lankin V.S., Kulikov A.V., Trapezov O.V. Application of 3-D imaging sensor for tracking minipigs in the open field test. J. Neurosci. Methods. 2014;235:219-225. DOI 10.1016/j.jneumeth.2014.07.012.

17. Levitan R.D. The chronobiology and neurobiology of winter seasonal affective disorder. Dialogues Clin. Neurosci. 2007;9:315-324. DOI 10.1016/j.jcin.2015.10.034.

18. Łojko D., Buzuk G., Owecki M., Ruchała M., Rybakowski J.K. Atypical features in depression: Association with obesity and bipolar disorder. J. Affect. Disord. 2015;185:76-80. DOI 10.1016/j.jad.2015.06.020.

19. Lu D., Willard D., Patel I.R., Kadwell S., Overton L., Kost T., Luther M., Chen W., Woychik R.P., Wilkison W.O., Cone R.D. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994;371:799-802. DOI 10.1038/371799a0.

20. Luppino F.S., de Wit L.M., Bouvy P.F., Stijnen T., Cuijpers P., Penninx B.W.J.H., Zitman F.G. Overweight, obesity, and depression. Arch. Gen. Psychiatry. 2010;67:220-229. DOI 10.1001/archgenpsychiatry.2010.2.

21. Miller A.L. Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern. Med. Rev. 2005;10:5-13.

22. Monteiro S., Roque S., de Sá-Calçada D., Sousa N., Correia-Neves M., Cerqueira J.J. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry. 2015;6:6. DOI 10.3389/fpsyt.2015.00006.

23. Otsuka T., Kawai M., Togo Y., Goda R., Kawase T., Matsuo H., Iwamoto A., Nagasawa M., Furuse M., Yasuo S. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice. Psychoneuroendocrinology. 2014;40:37-47. DOI 10.1016/j.psyneuen.2013.10.013.

24. Pack A.I., Galante R.J., Maislin G., Cater J., Metaxas D., Lu S., Zhang L., Von Smith R., Kay T., Lian J., Svenson K., Peters L.L. Novel method for high-throughput phenotyping of sleep in mice. Physiol. Genomics. 2007;28:232-238. DOI 10.1152/physiolgenomics.00139.2006.

25. Perry W.L., Copeland N.G., Jenkins N.A. The molecular basis for dominant yellow agouti coat color mutations. BioEssays. 1994;16:705707. DOI 10.1002/bies.950161002.

26. Prut L., Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 2003;463:3-33. DOI 10.1016/S0014-2999(03)01272-X.

27. Sharma A.N., Elased K.M., Garrett T.L., Lucot J.B. Neurobehavioral deficits in db/db diabetic mice. Physiol. Behav. 2010;101:381-388. DOI 10.1016/j.physbeh.2010.07.002.

28. Simon G.E., Von Korff M., Saunders K., Miglioretti D.L., Crane P.K., Van Belle G., Kessler R.C. Association between obesity and psychiatric disorders in the US adult population. Arch. Gen. Psychiatry. 2006;63:824-830. DOI 10.1001/archpsyc.63.7.824.

29. Stunkard A.J., Faith M.S., Allison K.C. Depression and obesity. Biol. Psychiatry. 2003;54:330-337. DOI 10.1016/S0006-3223(03)00608-5.

30. Young J.W., Cope Z.A., Romoli B., Schrurs E., Joosen A., Van Enkhuizen J., Sharp R.F., Dulcis D. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology. 2018;43:1721-1731. DOI 10.1038/s41386018-0031-y.


Review

Views: 1052


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)