Patterns of nucleotide diversity for different domains of centromeric histone H3 (CENH3) gene in Secale L.
https://doi.org/10.18699/VJ19.472
Abstract
About the Authors
S. S. GatzkayaRussian Federation
Novosibirsk.
E. V. Evtushenko
Russian Federation
Novosibirsk.
References
1. Comai L., Maheshwari S., Marimuthu M.P.A. Plant centromeres. Curr. Opin. Plant Biol. 2017;36:158-167. DOI 10.1016/j.pbi.2017.03.003.
2. Evtushenko E.V., Elisafenko E.A., Gatzkaya S.S., Lipikhina Y.A., Hou- ben A., Vershinin A.V Conserved molecular structure of the centro¬meric histone CENH3 in Secale and its phylogenetic relationships. Sci. Rep. 2017;7:17628. DOI 10.1038/s41598-017-17932-8.
3. Frederiksen S., Petersen G. A taxonomic revision of Secale (Triticeae, Poaceae). Nord. J. Bot. 1998;18:399-420. DOI 10.1111/j.1756-1051. 1998.tb01517.x.
4. Hagenblad J., Oliveira H.R., Forsberg N.E.G., Leino M.W. Geographi-cal distribution of genetic diversity in Secale landrace and wild ac¬cessions. BMC Plant Biol. 2016;16:23. DOI 10.1186/s12870-016- 0710-y.
5. Ishii T., Sunamura N., Matsumoto A., Eltayeb A.E., Tsujimoto H. Pre¬ferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) x pearl millet (Pennisetum glau- cum L.) hybrid embryos. Chromosome Res. 2015;23:709-718. DOI 10.1007/s10577-015-9477-5.
6. Karimi-Ashtiyani R., Ishii T., Niessen M., Stein N., Heckmann S., Gurushidze M., Banaei-Moghaddam A.M., Fuchs J., Schubert V., Koch K., Weiss O., Demidov D., Schmidt K., Kumlehn J., Houben A. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Nat. Acad. Sci. USA. 2015;112:П211-П216. DOI 10.1073/PNAS.1504333112.
7. Kawabe A., Shuhei Nasuda S., Charlesworth D. Duplication of centro¬meric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Gene¬tics. 2006;174(4):2021-2032. DOI 10.1534/genetics.106.063628.
8. Li Y., Haseneyer G., Schon C.-C., Ankerst D., Korzun V., Wilde P., Bauer E. High levels of nucleotide diversity and fast decline of link¬age disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011;11:6. DOI 10.1186/1471-2229-11-6.
9. Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-1452. DOI 10.1093/bioinformatics/btp187.
10. Maheshwari S., Tan E.H., West A., Franklin F.C.H., Comai L., Chan S.W.L. Naturally occurring differences in CENH3 affect chro-mosome segregation in zygotic mitosis of hybrids. PLoS Genet. 2015;11(2):e1004970. DOI 10.1371/journal.pgen.1004970.
11. Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76(4):5269-5273. DOI 10.1073/pnas.76.10.5269.
12. Roach K.C., Ross B.D., Malik H.S. Rapid evolution of centromeres and centromeric/kinetochore proteins. Eds. R. Singh, J. Xu, R. Ku- lathinal. Evolution in the Fast Lane: Rapidly Evolving Genes and Genetic Systems. Oxford University Press, 2012;83-93.
13. Sanei M., Pickering R., Kumke K., Nasuda S., Houben A. Loss of cen¬tromeric histone H3 (CENH3) from centromeres precedes uniparen¬tal chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA. 2011;108(33):498-505. DOI 10.1073/pnas. 1103190108.
14. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lo-pez R., McWilliam H., Remmert M., Soding J., Thompson J., Hig-gins D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7: 539. DOI 10.1038/msb.2011.75.
15. Tang Z.X., Ross K., Ren Z.L., Yang Z.J., Zhang H.Y., Chikmawati T., Miftahudin M., Gustafson J.P. Secale. Ed. C. Kole. Wild Crop Rela¬tives: Genomic and Breeding Resources. New York: Springer, 2011. DOI 10.1007/978-3-642-14228-4_8.
16. Watterson G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975;7:256-276. DOI 10.1016/0040-5809(75)90020-9