Preview

Vavilov Journal of Genetics and Breeding

Advanced search

ADF1 and BEAF-32 chromatin proteins affect nucleosome positioning and DNA decompaction in 61C7/C8 interband region of Drosophila melanogaster polytene chromosomes

https://doi.org/10.18699/VJ19.475

Abstract

The formation of interphase chromosomes is a multi-level process in which DNA is compacted several thousandfold by association with histones and non-histone proteins. The first step of compaction includes the formation of nucleosomes – the basic repeating units of chromatin. Further packaging occurs due to DNA binding to histone H1 and non-histone proteins involved in enhancer-promoter and insulator interactions. Under these conditions, the genome retains its functionality due to the dynamic and uneven DNA compaction along the chromatin fiber. Since the DNA compaction level affects the transcription activity of a certain genomic region, it is important to understand the interplay between the factors acting at different levels of the packaging process. Drosophila polytene chromosomes are an excellent model system for studying the molecular mechanisms that determine DNA compaction degree. The unevenness of DNA packaging along the chromatin fiber is easily observed along these chromosomes due to their large size and specific banding pattern. The purpose of this study was to figure out the role of two non-histone regulatory proteins, ADF1 and BEAF-32, in the DNA packaging process from nucleosome positioning to the establishment of the final chromosome structure. We studied the impact of mutations that affect ADF1 and BEAF-32 binding sites on the formation of 61C7/C8 interband – one of the decompacted regions of Drosophila polytene chromosomes. We show that such mutations led to the collapse of an interband, which was accompanied with increased nucleosome stability. We also find that ADF1 and BEAF-32 binding sites are essential for the rescue of lethality caused by the null allele of bantam microRNA gene located in the region 61C7/C8.

About the Authors

M. B. Schwartz (Berkaeva)
Institute of Molecular and Cellular Biology, SB RAS.
Russian Federation
Novosibirsk.


T. E. Pankova
Institute of Molecular and Cellular Biology, SB RAS.
Russian Federation
Novosibirsk.


S. A. Demakov
Institute of Molecular and Cellular Biology, SB RAS.
Russian Federation
Novosibirsk.


References

1. Andreenkov O.V., Andreenkova N.G., Volkova E.I., Georgiev P.G., Goncharova A.A., Pokholkova G.V., Demakov S.A. Ectopic tethe-ring of the chromator protein in UASDBD(GAL4) system as ap-proach for studying of the insulator proteins in Drosophila melano- gaster polytene chromosomes. Tsitologiia. 2016;58(6):493-497. (in Russian)

2. Berkaeva M., Demakov S., Schwartz Y.B., Zhimulev I. Functional analysis of Drosophila polytene chromosomes decompacted unit: the interband. Chromosome Res. 2009;17(6):745-754. DOI 10.1007/ s10577-009-9065-7.

3. Brennecke J., Hipfner D.R., Stark A., Russell R.B., Cohen S.M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25-36.

4. Chereji R.V., Clark D.J. Major determinants of nucleosome position-ing. Biophys. J. 2018;114(10):2279-2289. DOI 10.1016/j.bpj.2018. 03.015.

5. Chereji R.V., Kan T.-W., Grudniewska M.K., Romashchenko A.V., Be- rezikov E., Zhimulev I.F., Guryev V., Morozov A.V., Moshkin Y.M. Genome-wide profiling of nucleosome sensitivity and chromatin ac¬cessibility in Drosophila melanogaster. Nucleic Acids Res. 2016; 44(3):1036-1051. DOI 10.1093/nar/gkv978.

6. England B.P., Admon A., Tjian R. Cloning of Drosophila transcription factor Adf-1 reveals homology to Myb oncoproteins. Proc. Natl. Acad. Sci. USA. 1992;89(2):683-687.

7. Gilbert M.K., Tan Y.Y., Hart C.M. The Drosophila boundary element- associated factors BEAF-32A and BEAF-32B affect chromatin structure. Genetics. 2006;173(3):1365-1375. DOI 10.1534/genetics. 106.056002.

8. Jiang N., Emberly E., Cuvier O., Hart C.M. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Dro-sophila melanogaster links BEAF to transcription. Mol. Cell. Biol. 2009;29(13):3556-3568. DOI 10.1128/MCB.01748-08.

9. Kvon E.Z., Demakov S.A., Zhimulev I.F. Chromatin decompaction in the interbands of Drosophila polytene chromosomes does not cor¬relate with high transcription level. Russ. J. Genet. 2011;47(6):674- 681. DOI 10.1134/S1022795411060135. (in Russian)

10. Kwon S.Y., Grisan V, Jang B., Herbert J., Badenhorst P. Genome¬wide mapping targets of the metazoan chromatin remodeling factor NURF reveals nucleosome remodeling at enhancers, core promoters and gene insulators. PLoS Genet. 2016;12(4):1-26.

11. Martin F.A., Perez-Garijo A., Moreno E., Morata G. The brinker gra-dient controls wing growth in Drosophila. Development. 2004; 131(20):4921-4930. DOI 10.1242/dev.01385.

12. Moshkin Y.M., Chalkley G.E., Kan T.W., Reddy B.A., Ozgur Z., van Ijcken W.F.J., Dekkers D.H.W., Demmers J.A., Travers A.A., Ver- rijzer C.P. Remodelers organize cellular chromatin by counteract-ing intrinsic histone-DNA sequence preferences in a class-specific manner. Mol. Cell. Biol. 2012;32(3):675-688. DOI 10.1128/MCB. 06365-11.

13. Oh H., Irvine K.D. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev. Cell. 2011;20(1):109-122. DOI 10.1016/j. devcel.2010.12.002.

14. Orsi G.A., Kasinathan S., Hughes K.T., Saminadin-Peter S., Heni- koff S., Ahmad K. High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Res. 2014; 24(5):809-820. DOI 10.1101/gr.163642.113.

15. Peng H.W., Slattery M., Mann R.S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev. 2009;23(19):2307-2319. DOI 10.1101/ gad.1820009.

16. Rath U., Ding Y., Deng H., Qi H., Bao X., Zhang W., Girton J., Johan-sen J., Johansen K.M. The chromodomain protein, Chromator, in-teracts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes. J. Cell Sci. 2006;119(Pt 11):2332-2341.

17. Semeshin V.F., Demakov S.A., Shloma V.V., Vatolina T.Y., Gorcha-kov A.A., Zhimulev I.F. Interbands behave as decompacted autono¬mous units in Drosophila melanogaster polytene chromosomes. Ge- netica. 2008;132(3):267-279.

18. Talamillo A., Fernandez-Moreno M.A., Martinez-Azorin F., Born- stein B., Ochoa P., Garesse R. Expression of the Drosophila melano¬gaster ATP synthase a subunit gene is regulated by a transcriptional element containing GAF and Adf-1 binding sites. Eur. J. Biochem. 2004;271(20):4003-4013. DOI 10.1111/j.1432-1033.2004.04336.x.

19. Thomas G.H., Elgin S.C. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J. 1988;7(7):2191-2201.

20. Tsukiyama T., Becker P.B., Wu C. ATP-dependent nucleosome disrup¬tion at a heat-shock promoter mediated by binding of GAGA tran¬scription factor. Nature. 1994;367(6463):525-532. DOI 10.1038/ 367525a0.

21. Vogelmann J., Le Gall A., Dejardin S., Allemand F., Gamot A., Labesse G., Cuvier O., Negre N., Cohen-Gonsaud M., Margeat E., Nollmann M. Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS Genet. 2014;10(8):e1004544. DOI 10.1371/journal. pgen.1004544.

22. Zhimulev I.F., Semeshin V.F., Kulichkov V.A., Belyaeva E.S. Inter-calary heterochromatin in Drosophila. I. Localization and general characteristics. Chromosoma. 1982;87(2):197-228. DOI 10.1007/ BF00338489.

23. Zhimulev I.F., Zykova T.Y., Goncharov F.P., Khoroshko V.A., De- makova O.V., Semeshin V.F., Pokholkova G.V., Boldyreva L.V., Demidova D.S., Babenko V.N., Demakov S.A., Belyaeva E.S. Ge-netic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One. 2014;9(7):e101631. DOI 10.1371/journal.pone.0101631


Review

Views: 615


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)